IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i4p2139-2153.html
   My bibliography  Save this article

Dynamics of a Ivlev-type predator–prey system with constant rate harvesting

Author

Listed:
  • Ling, Li
  • Wang, Weiming

Abstract

In this paper, by using the analysis of qualitative method and bifurcation theory, we investigate the dynamical properties of the Ivlev-type predator–prey model with nonzero constant prey harvesting and with or without time delay, respectively. It is shown that the system we considered can exhibit the subcritical and supercritical Hopf bifurcation. We also study the effect of the time delay on the dynamics of the system. By choosing the delay τ as a bifurcation parameter, we show that Hopf bifurcation can occur as the delay τ crosses some critical values. The direction and stability of the Hopf bifurcation are investigated by following the procedure of deriving normal form given by Faria and Magalhães. Finally, numerical simulations are performed to illustrate the obtained results.

Suggested Citation

  • Ling, Li & Wang, Weiming, 2009. "Dynamics of a Ivlev-type predator–prey system with constant rate harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2139-2153.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:2139-2153
    DOI: 10.1016/j.chaos.2008.08.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908003950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.08.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Hailing & Wang, Weiming, 2008. "The dynamical complexity of a Ivlev-type prey–predator system with impulsive effect," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1168-1176.
    2. Chen, Yuanyuan & Changming, Song, 2008. "Stability and Hopf bifurcation analysis in a prey–predator system with stage-structure for prey and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1104-1114.
    3. Sun, Chengjun & Han, Maoan & Lin, Yiping & Chen, Yuanyuan, 2007. "Global qualitative analysis for a predator–prey system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1582-1596.
    4. Liu, Zhihua & Yuan, Rong, 2006. "Stability and bifurcation in a harvested one-predator–two-prey model with delays," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1395-1407.
    5. Gan, Qintao & Xu, Rui & Yang, Pinghua, 2009. "Bifurcation and chaos in a ratio-dependent predator–prey system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1883-1895.
    6. Xiang, Zhongyi & Song, Xinyu, 2009. "The dynamical behaviors of a food chain model with impulsive effect and Ivlev functional response," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2282-2293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xue & Zhang, Qing-Ling & Liu, Chao & Xiang, Zhong-Yi, 2009. "Bifurcations of a singular prey–predator economic model with time delay and stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1485-1494.
    2. Tian, Yuan & Gao, Yan & Sun, Kaibiao, 2022. "Global dynamics analysis of instantaneous harvest fishery model guided by weighted escapement strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Guang-Ping & Li, Wan-Tong & Yan, Xiang-Ping, 2009. "Hopf bifurcations in a predator–prey system with multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1273-1285.
    2. Rao, Feng & Wang, Weiming & Li, Zhenqing, 2009. "Spatiotemporal complexity of a predator–prey system with the effect of noise and external forcing," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1634-1644.
    3. Xingjie Wu & Wei Du & Genan Pan & Wentao Huang, 2013. "The dynamical behaviors of a Ivlev-type two-prey two-predator system with impulsive effect," Indian Journal of Pure and Applied Mathematics, Springer, vol. 44(1), pages 1-27, February.
    4. Zhang, Xue & Zhang, Qing-Ling & Liu, Chao & Xiang, Zhong-Yi, 2009. "Bifurcations of a singular prey–predator economic model with time delay and stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1485-1494.
    5. Panday, Pijush & Samanta, Sudip & Pal, Nikhil & Chattopadhyay, Joydev, 2020. "Delay induced multiple stability switch and chaos in a predator–prey model with fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 134-158.
    6. Kim, Hye Kyung & Baek, Hunki, 2013. "The dynamical complexity of a predator–prey system with Hassell–Varley functional response and impulsive effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 1-14.
    7. Li, Danyang & Liu, Hua & Zhang, Haotian & Wei, Yumei, 2023. "Influence of multiple delays mechanisms on predator–prey model with Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Elettreby, M.F., 2009. "Two-prey one-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2018-2027.
    9. Jiang, Zhichao & Wei, Junjie, 2008. "Stability and bifurcation analysis in a delayed SIR model," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 609-619.
    10. Xu, Rui & Ma, Zhien, 2008. "Stability and Hopf bifurcation in a ratio-dependent predator–prey system with stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 669-684.
    11. Russu, Paolo, 2009. "Hopf bifurcation in a environmental defensive expenditures model with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3147-3159.
    12. Wang, Zhen & Xie, Yingkang & Lu, Junwei & Li, Yuxia, 2019. "Stability and bifurcation of a delayed generalized fractional-order prey–predator model with interspecific competition," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 360-369.
    13. Dhar, Joydip & Singh, Harkaran & Bhatti, Harbax Singh, 2015. "Discrete-time dynamics of a system with crowding effect and predator partially dependent on prey," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 324-335.
    14. Wu, Xingjie & Huang, Wentao, 2009. "Dynamic analysis of a one-prey multi-predator impulsive system with Ivlev-type functional," Ecological Modelling, Elsevier, vol. 220(6), pages 774-783.
    15. Sun, Chengjun & Loreau, Michel, 2009. "Dynamics of a three-species food chain model with adaptive traits," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2812-2819.
    16. Çelik, Canan & Duman, Oktay, 2009. "Allee effect in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1956-1962.
    17. Zhang, Long & Teng, Zhidong, 2008. "Permanence for a class of periodic time-dependent predator–prey system with dispersal in a patchy-environment," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1483-1497.
    18. Zhang, Long & Teng, Zhidong, 2008. "Boundedness and permanence in a class of periodic time-dependent predator–prey system with prey dispersal and predator density-independence," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 729-739.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:2139-2153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.