IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/574213.html
   My bibliography  Save this article

Mathematical Analysis of a Single-Species Population Model in a Polluted Environment with Discrete Time Delays

Author

Listed:
  • Swarnali Sharma
  • G. P. Samanta

Abstract

We have discussed the dynamical behaviour of a single-species population model in a polluted environment which describes the effect of toxicants on ecological system. Boundedness, positivity, and stability analysis of the model at various equilibrium points is discussed thoroughly. We have also studied the effect of single discrete delay as well as double discrete delays on the population model. Existence conditions of the Hopf bifurcation for single time delay are investigated. The length of delay preserving the stability is also estimated. The direction and the stability criteria of the bifurcating periodic solutions are determined by using the normal form theory and the center manifold theorem. The stability of the model with double time delays is investigated by using the Nyquist criteria. By choosing one of the delays as a bifurcation parameter, the model is found to undergo a Hopf bifurcation. Some numerical simulations for justifying the theoretical results are also illustrated by using MATLAB, which shows the reliability of our model from the practical point of view.

Suggested Citation

  • Swarnali Sharma & G. P. Samanta, 2013. "Mathematical Analysis of a Single-Species Population Model in a Polluted Environment with Discrete Time Delays," Journal of Mathematics, Hindawi, vol. 2013, pages 1-18, June.
  • Handle: RePEc:hin:jjmath:574213
    DOI: 10.1155/2013/574213
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JMATH/2013/574213.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JMATH/2013/574213.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/574213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yuanyuan & Yu, Jiang & Sun, Chengjun, 2007. "Stability and Hopf bifurcation analysis in a three-level food chain system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 683-694.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Chengjun & Loreau, Michel, 2009. "Dynamics of a three-species food chain model with adaptive traits," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2812-2819.
    2. Sen, Ayan & Mukherjee, Debasis, 2009. "Chaos in the delay logistic equation with discontinuous delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2126-2132.
    3. Cai, Liming & Li, Xuezhi & Yu, Jingyuan & Zhu, Guangtian, 2009. "Dynamics of a nonautonomous predator–prey dispersion–delay system with Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2064-2075.
    4. Chen, Yuanyuan & Changming, Song, 2008. "Stability and Hopf bifurcation analysis in a prey–predator system with stage-structure for prey and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1104-1114.
    5. Pal, D. & Mahapatra, G.S., 2016. "Effect of toxic substance on delayed competitive allelopathic phytoplankton system with varying parameters through stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 109-124.
    6. Xu, Rui & Ma, Zhien, 2008. "Stability and Hopf bifurcation in a ratio-dependent predator–prey system with stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 669-684.
    7. Gan, Qintao & Xu, Rui & Yang, Pinghua, 2009. "Bifurcation and chaos in a ratio-dependent predator–prey system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1883-1895.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:574213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.