IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v38y2008i3p669-684.html
   My bibliography  Save this article

Stability and Hopf bifurcation in a ratio-dependent predator–prey system with stage structure

Author

Listed:
  • Xu, Rui
  • Ma, Zhien

Abstract

A ratio-dependent predator–prey model with stage structure for the predator and time delay due to the gestation of the predator is investigated. By analyzing the characteristic equations, the local stability of a positive equilibrium and a boundary equilibrium is discussed, respectively. Further, it is proved that the system undergoes a Hopf bifurcation at the positive equilibrium when τ=τ0. By using an iteration technique, sufficient conditions are derived for the global attractivity of the positive equilibrium. By comparison arguments, sufficient conditions are obtained for the global stability of the boundary equilibrium. Numerical simulations are carried out to illustrate the main results.

Suggested Citation

  • Xu, Rui & Ma, Zhien, 2008. "Stability and Hopf bifurcation in a ratio-dependent predator–prey system with stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 669-684.
  • Handle: RePEc:eee:chsofr:v:38:y:2008:i:3:p:669-684
    DOI: 10.1016/j.chaos.2007.01.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907000203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.01.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Sheikh, M.M.A. & Mahrouf, S.A.A., 2005. "Stability and bifurcation of a simple food chain in a chemostat with removal rates," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1475-1489.
    2. Jing, Zhujun & Yang, Jianping, 2006. "Bifurcation and chaos in discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 259-277.
    3. Sun, Chengjun & Han, Maoan & Lin, Yiping, 2007. "Analysis of stability and Hopf bifurcation for a delayed logistic equation," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 672-682.
    4. Liu, Zhihua & Yuan, Rong, 2006. "Stability and bifurcation in a harvested one-predator–two-prey model with delays," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1395-1407.
    5. Chen, Yuanyuan & Yu, Jiang & Sun, Chengjun, 2007. "Stability and Hopf bifurcation analysis in a three-level food chain system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 683-694.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xuedi & Peng, Miao & Liu, Xiuyu, 2015. "Stability and Hopf bifurcation analysis of a ratio-dependent predator–prey model with two time delays and Holling type III functional response," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 496-508.
    2. Jana, Soovoojeet & Chakraborty, Milon & Chakraborty, Kunal & Kar, T.K., 2012. "Global stability and bifurcation of time delayed prey–predator system incorporating prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 85(C), pages 57-77.
    3. Jana, Debaldev & Agrawal, Rashmi & Upadhyay, Ranjit Kumar, 2015. "Dynamics of generalist predator in a stochastic environment: Effect of delayed growth and prey refuge," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 1072-1094.
    4. Changjin Xu, 2017. "Delay-Induced Oscillations in a Competitor-Competitor-Mutualist Lotka-Volterra Model," Complexity, Hindawi, vol. 2017, pages 1-12, April.
    5. Xiaohong Tian & Rui Xu, 2011. "Global Stability of a Virus Infection Model with Time Delay and Absorption," Discrete Dynamics in Nature and Society, Hindawi, vol. 2011, pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gan, Qintao & Xu, Rui & Yang, Pinghua, 2009. "Bifurcation and chaos in a ratio-dependent predator–prey system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1883-1895.
    2. Sen, Ayan & Mukherjee, Debasis, 2009. "Chaos in the delay logistic equation with discontinuous delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2126-2132.
    3. Wang, Jiang & Chen, Liangquan & Fei, Xianyang, 2007. "Bifurcation control of the Hodgkin–Huxley equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 217-224.
    4. Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Swarnali Sharma & G. P. Samanta, 2013. "Mathematical Analysis of a Single-Species Population Model in a Polluted Environment with Discrete Time Delays," Journal of Mathematics, Hindawi, vol. 2013, pages 1-18, June.
    6. Zhang, Xue & Zhang, Qing-Ling & Liu, Chao & Xiang, Zhong-Yi, 2009. "Bifurcations of a singular prey–predator economic model with time delay and stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1485-1494.
    7. Ling, Li & Wang, Weiming, 2009. "Dynamics of a Ivlev-type predator–prey system with constant rate harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2139-2153.
    8. Chen, Yanguang, 2009. "Spatial interaction creates period-doubling bifurcation and chaos of urbanization," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1316-1325.
    9. Jiao, Jianjun & Yang, Xiaosong & Chen, Lansun & Cai, Shaohong, 2009. "Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2280-2287.
    10. Chen, Yuanyuan & Changming, Song, 2008. "Stability and Hopf bifurcation analysis in a prey–predator system with stage-structure for prey and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1104-1114.
    11. Sun, Huijing & Cao, Hongjun, 2007. "Bifurcations and chaos of a delayed ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1383-1393.
    12. Pal, D. & Mahapatra, G.S., 2016. "Effect of toxic substance on delayed competitive allelopathic phytoplankton system with varying parameters through stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 109-124.
    13. Wang, Jiang & Chen, Liangquan & Fei, Xianyang, 2007. "Analysis and control of the bifurcation of Hodgkin–Huxley model," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 247-256.
    14. Jiang, Zhichao & Wei, Junjie, 2008. "Stability and bifurcation analysis in a delayed SIR model," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 609-619.
    15. Lv, Jian Cheng & Yi, Zhang, 2007. "Stability and chaos of LMSER PCA learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1440-1447.
    16. Gwaltney, C. Ryan & Luo, WenTao & Stadtherr, Mark A., 2007. "Computation of equilibrium states and bifurcations using interval analysis: Application to food chain models," Ecological Modelling, Elsevier, vol. 203(3), pages 495-510.
    17. Yijie Li & Zhiming Guo, 2022. "Wolbachia Invasion Dynamics by Integrodifference Equations," Mathematics, MDPI, vol. 10(22), pages 1-13, November.
    18. Xiang, Zhongyi & Song, Xinyu, 2007. "A model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with periodic input," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1419-1428.
    19. Zhang, Xue & Zhang, Qing-ling & Zhang, Yue, 2009. "Bifurcations of a class of singular biological economic models," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1309-1318.
    20. Lv, Jian Cheng & Yi, Zhang, 2007. "Some chaotic behaviors in a MCA learning algorithm with a constant learning rate," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1040-1047.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:38:y:2008:i:3:p:669-684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.