IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000314.html
   My bibliography  Save this article

Broadband Criticality of Human Brain Network Synchronization

Author

Listed:
  • Manfred G Kitzbichler
  • Marie L Smith
  • Søren R Christensen
  • Ed Bullmore

Abstract

Self-organized criticality is an attractive model for human brain dynamics, but there has been little direct evidence for its existence in large-scale systems measured by neuroimaging. In general, critical systems are associated with fractal or power law scaling, long-range correlations in space and time, and rapid reconfiguration in response to external inputs. Here, we consider two measures of phase synchronization: the phase-lock interval, or duration of coupling between a pair of (neurophysiological) processes, and the lability of global synchronization of a (brain functional) network. Using computational simulations of two mechanistically distinct systems displaying complex dynamics, the Ising model and the Kuramoto model, we show that both synchronization metrics have power law probability distributions specifically when these systems are in a critical state. We then demonstrate power law scaling of both pairwise and global synchronization metrics in functional MRI and magnetoencephalographic data recorded from normal volunteers under resting conditions. These results strongly suggest that human brain functional systems exist in an endogenous state of dynamical criticality, characterized by a greater than random probability of both prolonged periods of phase-locking and occurrence of large rapid changes in the state of global synchronization, analogous to the neuronal “avalanches” previously described in cellular systems. Moreover, evidence for critical dynamics was identified consistently in neurophysiological systems operating at frequency intervals ranging from 0.05–0.11 to 62.5–125 Hz, confirming that criticality is a property of human brain functional network organization at all frequency intervals in the brain's physiological bandwidth.Author Summary: Systems in a critical state are poised on the cusp of a transition between ordered and random behavior. At this point, they demonstrate complex patterning of fluctuations at all scales of space and time. Criticality is an attractive model for brain dynamics because it optimizes information transfer, storage capacity, and sensitivity to external stimuli in computational models. However, to date there has been little direct experimental evidence for critical dynamics of human brain networks. Here, we considered two measures of functional coupling or phase synchronization between components of a dynamic system: the phase lock interval or duration of synchronization between a specific pair of time series or processes in the system and the lability of global synchronization among all pairs of processes. We confirmed that both synchronization metrics demonstrated scale invariant behaviors in two computational models of critical dynamics as well as in human brain functional systems oscillating at low frequencies (

Suggested Citation

  • Manfred G Kitzbichler & Marie L Smith & Søren R Christensen & Ed Bullmore, 2009. "Broadband Criticality of Human Brain Network Synchronization," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-13, March.
  • Handle: RePEc:plo:pcbi00:1000314
    DOI: 10.1371/journal.pcbi.1000314
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000314
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000314&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Chialvo, Dante, 2004. "Critical brain networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(4), pages 756-765.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zueva Marina V, 2018. "A New Look at Stimulation Therapy with Complex-Structured Stimuli in Traumatic Brain Injuries," Global Journal of Addiction & Rehabilitation Medicine, Juniper Publishers Inc., vol. 5(1), pages 12-16, January.
    2. Todd Zorick & Mark A Mandelkern, 2013. "Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
    3. Christian Meisel & Christian Kuehn, 2012. "Scaling Effects and Spatio-Temporal Multilevel Dynamics in Epileptic Seizures," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    4. Christian Meisel & Alexander Storch & Susanne Hallmeyer-Elgner & Ed Bullmore & Thilo Gross, 2012. "Failure of Adaptive Self-Organized Criticality during Epileptic Seizure Attacks," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-8, January.
    5. Aguilar-Velázquez, D. & Guzmán-Vargas, L., 2017. "Synchronization and 1/f signals in interacting small-world networks," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 418-425.
    6. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.
    7. Allegrini, Paolo & Paradisi, Paolo & Menicucci, Danilo & Laurino, Marco & Bedini, Remo & Piarulli, Andrea & Gemignani, Angelo, 2013. "Sleep unconsciousness and breakdown of serial critical intermittency: New vistas on the global workspace," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 32-43.
    8. Woo, Junhyuk & Kim, Soon Ho & Kim, Hyeongmo & Han, Kyungreem, 2024. "Characterization of the neuronal and network dynamics of liquid state machines," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    9. Adrián Ponce-Alvarez & Gustavo Deco & Patric Hagmann & Gian Luca Romani & Dante Mantini & Maurizio Corbetta, 2015. "Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-23, February.
    10. Fingelkurts, Andrew A. & Fingelkurts, Alexander A. & Neves, Carlos F.H., 2013. "Consciousness as a phenomenon in the operational architectonics of brain organization: Criticality and self-organization considerations," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 13-31.
    11. Baysal, Veli & Yılmaz, Ergin, 2021. "Chaotic Signal Induced Delay Decay in Hodgkin-Huxley Neuron," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    12. Stoop, Ruedi & Kanders, Karlis & Lorimer, Tom & Held, Jenny & Albert, Carlo, 2016. "Big data naturally rescaled," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 81-90.
    13. Robert G. Sacco, 2019. "The Predictability of Synchronicity Experience: Results from a Survey of Jungian Analysts," International Journal of Psychological Studies, Canadian Center of Science and Education, vol. 11(3), pages 1-46, September.
    14. Wei, Jinling & Zhou, Haiyan & Meng, Jun & Zhang, Fan & Chen, Yunmo & Zhou, Su, 2016. "The SOC in cells’ living expectations of Conway’s Game of Life and its extended version," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 348-352.
    15. Korosh Mahmoodi & Bruce J. West & Paolo Grigolini, 2018. "Self-Organized Temporal Criticality: Bottom-Up Resilience versus Top-Down Vulnerability," Complexity, Hindawi, vol. 2018, pages 1-10, March.
    16. David Samu & Anil K Seth & Thomas Nowotny, 2014. "Influence of Wiring Cost on the Large-Scale Architecture of Human Cortical Connectivity," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-24, April.
    17. Laura E. Suárez & Agoston Mihalik & Filip Milisav & Kenji Marshall & Mingze Li & Petra E. Vértes & Guillaume Lajoie & Bratislav Misic, 2024. "Connectome-based reservoir computing with the conn2res toolbox," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Anna Barnes & Edward T Bullmore & John Suckling, 2009. "Endogenous Human Brain Dynamics Recover Slowly Following Cognitive Effort," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-6, August.
    19. Mikail Rubinov & Olaf Sporns & Jean-Philippe Thivierge & Michael Breakspear, 2011. "Neurobiologically Realistic Determinants of Self-Organized Criticality in Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-14, June.
    20. Rodrigo P. Rocha & Loren Koçillari & Samir Suweis & Michele Filippo De Grazia & Michel Thiebaut Schotten & Marco Zorzi & Maurizio Corbetta, 2022. "Recovery of neural dynamics criticality in personalized whole-brain models of stroke," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    21. Martinez-Saito, Mario, 2022. "Discrete scaling and criticality in a chain of adaptive excitable integrators," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    22. Marcelo G Mattar & Michael W Cole & Sharon L Thompson-Schill & Danielle S Bassett, 2015. "A Functional Cartography of Cognitive Systems," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.
    2. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Alfaro, Carlos A. & Valencia, Carlos E. & Vargas, Marcos C., 2023. "Computing sandpile configurations using integer linear programming," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    4. Zare, Marzieh & Grigolini, Paolo, 2013. "Criticality and avalanches in neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 80-94.
    5. Jasleen Gundh & Awaneesh Singh & R K Brojen Singh, 2015. "Ordering Dynamics in Neuron Activity Pattern Model: An Insight to Brain Functionality," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-16, October.
    6. Pawel Sobkowicz, 2009. "Modelling Opinion Formation with Physics Tools: Call for Closer Link with Reality," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-11.
    7. Náther, Peter & Markošová, Mária & Rudolf, Boris, 2009. "Hierarchy in the growing scale-free network with local rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(24), pages 5036-5044.
    8. Giulio Ruffini & Ricardo Salvador & Ehsan Tadayon & Roser Sanchez-Todo & Alvaro Pascual-Leone & Emiliano Santarnecchi, 2020. "Realistic modeling of mesoscopic ephaptic coupling in the human brain," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-25, June.
    9. Reis, Adriane S. & Iarosz, Kelly C. & Ferrari, Fabiano A.S. & Caldas, Iberê L. & Batista, Antonio M. & Viana, Ricardo L., 2021. "Bursting synchronization in neuronal assemblies of scale-free networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.