IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003497.html
   My bibliography  Save this article

Study of a cannibalistic prey–predator model with Allee effect in prey under the presence of diffusion

Author

Listed:
  • Sajan,
  • Anshu,
  • Dubey, Balram

Abstract

In this study, we have investigated the temporal and spatio-temporal behavior of a prey–predator model with weak Allee effect in prey and the quality of being cannibalistic in a specialist predator. The parameters responsible for the Allee effect and cannibalism impact both the existence and stability of coexistence steady states of the temporal system. The temporal system exhibits various kinds of local bifurcations such as saddle–node, Hopf, Generalized Hopf (Bautin), Bogdanov–Takens, and global bifurcation like homoclinic, saddle–node bifurcation of limit cycles. For the model with self-diffusion, we establish the non-negativity and prior bounds of the solution. Subsequently, we derive the theoretical conditions in which self-diffusion leads to the destabilization of the interior equilibrium. Additionally, we explore the conditions under which cross-diffusion induces the Turing-instability where self-diffusion fails to do so. Further, we present different kinds of stationary and dynamic patterns on varying the values of diffusion coefficients to depict the spatio-temporal model’s rich dynamics. It has been found that the addition of self and cross-diffusion in a prey–predator model with the Allee effect in prey and cannibalistic predator play essential roles in comprehending the pattern formation of a distributed population model. It is expected that the comprehensive mathematical analysis and extensive numerical simulations used in investigating the global dynamics of the proposed model can facilitate researchers in studying the temporal and spatial aspects of prey–predator models in more significant detail.

Suggested Citation

  • Sajan, & Anshu, & Dubey, Balram, 2024. "Study of a cannibalistic prey–predator model with Allee effect in prey under the presence of diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003497
    DOI: 10.1016/j.chaos.2024.114797
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2023. "Qualitative study of cross-diffusion and pattern formation in Leslie–Gower predator–prey model with fear and Allee effects," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Han, Renji & Dey, Subrata & Banerjee, Malay, 2023. "Spatio-temporal pattern selection in a prey–predator model with hunting cooperation and Allee effect in prey," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Ghorai, Santu & Poria, Swarup, 2016. "Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 421-429.
    4. Peng, Yahong & Ling, Heyang, 2018. "Pattern formation in a ratio-dependent predator-prey model with cross-diffusion," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 307-318.
    5. Kumar, Vikas & Kumari, Nitu, 2021. "Bifurcation study and pattern formation analysis of a tritrophic food chain model with group defense and Ivlev-like nonmonotonic functional response," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    6. Bhunia, Bidhan & Ghorai, Santu & Kar, Tapan Kumar & Biswas, Samir & Bhutia, Lakpa Thendup & Debnath, Papiya, 2023. "A study of a spatiotemporal delayed predator–prey model with prey harvesting: Constant and periodic diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Kumari, Sarita & Tiwari, Satish Kumar & Upadhyay, Ranjit Kumar, 2022. "Cross diffusion induced spatiotemporal pattern in diffusive nutrient–plankton model with nutrient recycling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 246-272.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Souna, Fethi & Belabbas, Mustapha & Menacer, Youssaf, 2023. "Complex pattern formations induced by the presence of cross-diffusion in a generalized predator–prey model incorporating the Holling type functional response and generalization of habitat complexity e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 597-618.
    2. Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2024. "Cross-diffusion mediated Spatiotemporal patterns in a predator–prey system with hunting cooperation and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 128-147.
    3. Wang, Henan & Liu, Ping, 2023. "Pattern dynamics of a predator–prey system with cross-diffusion, Allee effect and generalized Holling IV functional response," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    4. Yangyang Shao & Yan Meng & Xinyue Xu, 2022. "Turing Instability and Spatiotemporal Pattern Formation Induced by Nonlinear Reaction Cross-Diffusion in a Predator–Prey System with Allee Effect," Mathematics, MDPI, vol. 10(9), pages 1-15, May.
    5. Ramya Seenivasan & Prosenjit Paul, 2024. "Turing patterns in exploited predator–prey systems with habitat loss," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(11), pages 1-15, November.
    6. Ghorai, Santu & Bairagi, Nandadulal, 2022. "Instabilities in hyperbolic reaction–diffusion system with cross diffusion and species-dependent inertia," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Ding, Linglong & Zhang, Xuebing & Lv, Guangying, 2024. "Dynamics of a plankton community with delay and herd-taxis," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    8. Yu, Hui & Du, Shengzhi & Dong, Enzeng & Tong, Jigang, 2022. "Transient behaviors and equilibria-analysis-based boundary crisis analysis in a smooth 4D dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Li, Shuai & Huang, Chengdai & Song, Xinyu, 2023. "Detection of Hopf bifurcations induced by pregnancy and maturation delays in a spatial predator–prey model via crossing curves method," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Bhunia, Bidhan & Ghorai, Santu & Kar, Tapan Kumar & Biswas, Samir & Bhutia, Lakpa Thendup & Debnath, Papiya, 2023. "A study of a spatiotemporal delayed predator–prey model with prey harvesting: Constant and periodic diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    11. Kumbhakar, Ruma & Hossain, Mainul & Pal, Nikhil, 2024. "Dynamics of a two-prey one-predator model with fear and group defense: A study in parameter planes," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    12. Yang, Ruizhi & Ma, Jian, 2018. "Analysis of a diffusive predator-prey system with anti-predator behaviour and maturation delay," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 128-139.
    13. Peng, Yahong & Zhang, Guoying, 2020. "Dynamics analysis of a predator–prey model with herd behavior and nonlocal prey competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 366-378.
    14. Ghosh, Joydev & Sahoo, Banshidhar & Poria, Swarup, 2017. "Prey-predator dynamics with prey refuge providing additional food to predator," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 110-119.
    15. Zhang, Limin & Wang, Tao, 2023. "Qualitative properties, bifurcations and chaos of a discrete predator–prey system with weak Allee effect on the predator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    16. Tian, Yuan & Li, Huanmeng & Sun, Kaibiao, 2024. "Complex dynamics of a fishery model: Impact of the triple effects of fear, cooperative hunting and intermittent harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 31-48.
    17. Yang, Yafei & Fan, Meng, 2023. "Impact of selective grazing on the dynamics of a diffusive plankton model with component Allee effect and additional food," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    18. Meng Zhu & Jing Li & Xinze Lian, 2022. "Pattern Dynamics of Cross Diffusion Predator–Prey System with Strong Allee Effect and Hunting Cooperation," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
    19. Li, Qiang & Liu, Zhijun & Yuan, Sanling, 2019. "Cross-diffusion induced Turing instability for a competition model with saturation effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 64-77.
    20. Hu, Junlang & Zhu, Linhe, 2021. "Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay in both network and non-network environments," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.