Study of a cannibalistic prey–predator model with Allee effect in prey under the presence of diffusion
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2024.114797
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ghorai, Santu & Poria, Swarup, 2016. "Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 421-429.
- Peng, Yahong & Ling, Heyang, 2018. "Pattern formation in a ratio-dependent predator-prey model with cross-diffusion," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 307-318.
- Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2023. "Qualitative study of cross-diffusion and pattern formation in Leslie–Gower predator–prey model with fear and Allee effects," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Han, Renji & Dey, Subrata & Banerjee, Malay, 2023. "Spatio-temporal pattern selection in a prey–predator model with hunting cooperation and Allee effect in prey," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
- Kumar, Vikas & Kumari, Nitu, 2021. "Bifurcation study and pattern formation analysis of a tritrophic food chain model with group defense and Ivlev-like nonmonotonic functional response," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
- Bhunia, Bidhan & Ghorai, Santu & Kar, Tapan Kumar & Biswas, Samir & Bhutia, Lakpa Thendup & Debnath, Papiya, 2023. "A study of a spatiotemporal delayed predator–prey model with prey harvesting: Constant and periodic diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Kumari, Sarita & Tiwari, Satish Kumar & Upadhyay, Ranjit Kumar, 2022. "Cross diffusion induced spatiotemporal pattern in diffusive nutrient–plankton model with nutrient recycling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 246-272.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Souna, Fethi & Belabbas, Mustapha & Menacer, Youssaf, 2023. "Complex pattern formations induced by the presence of cross-diffusion in a generalized predator–prey model incorporating the Holling type functional response and generalization of habitat complexity e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 597-618.
- Yangyang Shao & Yan Meng & Xinyue Xu, 2022. "Turing Instability and Spatiotemporal Pattern Formation Induced by Nonlinear Reaction Cross-Diffusion in a Predator–Prey System with Allee Effect," Mathematics, MDPI, vol. 10(9), pages 1-15, May.
- Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2024. "Cross-diffusion mediated Spatiotemporal patterns in a predator–prey system with hunting cooperation and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 128-147.
- Ramya Seenivasan & Prosenjit Paul, 2024. "Turing patterns in exploited predator–prey systems with habitat loss," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(11), pages 1-15, November.
- Wang, Henan & Liu, Ping, 2023. "Pattern dynamics of a predator–prey system with cross-diffusion, Allee effect and generalized Holling IV functional response," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
- Pal, Debjit & Ghorai, Santu & Kesh, Dipak & Mukherjee, Debasis, 2024. "Hopf bifurcation and patterns formation in a diffusive two prey-one predator system with fear in preys and help," Applied Mathematics and Computation, Elsevier, vol. 481(C).
- Tian, Yuan & Li, Huanmeng & Sun, Kaibiao, 2024. "Complex dynamics of a fishery model: Impact of the triple effects of fear, cooperative hunting and intermittent harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 31-48.
- Yang, Yafei & Fan, Meng, 2023. "Impact of selective grazing on the dynamics of a diffusive plankton model with component Allee effect and additional food," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Meng Zhu & Jing Li & Xinze Lian, 2022. "Pattern Dynamics of Cross Diffusion Predator–Prey System with Strong Allee Effect and Hunting Cooperation," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
- Li, Qiang & Liu, Zhijun & Yuan, Sanling, 2019. "Cross-diffusion induced Turing instability for a competition model with saturation effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 64-77.
- Ghorai, Santu & Bairagi, Nandadulal, 2022. "Instabilities in hyperbolic reaction–diffusion system with cross diffusion and species-dependent inertia," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
- Ding, Linglong & Zhang, Xuebing & Lv, Guangying, 2024. "Dynamics of a plankton community with delay and herd-taxis," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
- Yu, Hui & Du, Shengzhi & Dong, Enzeng & Tong, Jigang, 2022. "Transient behaviors and equilibria-analysis-based boundary crisis analysis in a smooth 4D dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
- Hu, Junlang & Zhu, Linhe, 2021. "Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay in both network and non-network environments," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
- Li, Shuai & Huang, Chengdai & Song, Xinyu, 2023. "Detection of Hopf bifurcations induced by pregnancy and maturation delays in a spatial predator–prey model via crossing curves method," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Bhunia, Bidhan & Ghorai, Santu & Kar, Tapan Kumar & Biswas, Samir & Bhutia, Lakpa Thendup & Debnath, Papiya, 2023. "A study of a spatiotemporal delayed predator–prey model with prey harvesting: Constant and periodic diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Kumbhakar, Ruma & Hossain, Mainul & Pal, Nikhil, 2024. "Dynamics of a two-prey one-predator model with fear and group defense: A study in parameter planes," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
- Mohan, Nishith & Kumari, Nitu, 2021. "Positive steady states of a SI epidemic model with cross diffusion," Applied Mathematics and Computation, Elsevier, vol. 410(C).
- Yang, Ruizhi & Ma, Jian, 2018. "Analysis of a diffusive predator-prey system with anti-predator behaviour and maturation delay," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 128-139.
- Kumar, Vikas, 2024. "Pattern formation and delay-induced instability in a Leslie–Gower type prey–predator system with Smith growth function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 78-97.
More about this item
Keywords
Allee effect; Cannibalism; Bifurcation; Self-diffusion; Cross-diffusion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003497. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.