IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip1s0960077923008962.html
   My bibliography  Save this article

Qualitative properties, bifurcations and chaos of a discrete predator–prey system with weak Allee effect on the predator

Author

Listed:
  • Zhang, Limin
  • Wang, Tao

Abstract

In this work, the qualitative properties of the fixed points in the non-hyperbolic and degenerate cases, codimension-one bifurcations and Marotto’s chaos of a discrete predator–prey system with weak Allee effect on the predator are investigated. Utilizing the center manifold theorem and the reduction principle, the qualitative property of each fixed point in the non-hyperbolic case is explored. Based on the approximate flow theory, the qualitative property of the boundary fixed point in the degenerate case is investigated. Making use of the center manifold theorem and the bifurcation theory, all the potential codimension-one bifurcation types of the co-existence fixed point are explored, including flip bifurcation and Neimark–Sacker bifurcation. For each type of these bifurcations, not only the concise non-degenerate condition expressed by the system parameters is given, but also the analytical expression of the system orbit caused by the bifurcation is derived. Based on the non-negativity of the bifurcation critical values, the non-resonant and non-degenerate conditions for the occurrence of these bifurcations, the system parameter plane is divided into several regions using tools such as the polynomial complete discriminant system theory, real root separation theory, dichotomy method, implicit function theorem and Cardan’s formula. In each region, the direction and stability of these bifurcations are studied, which helps to theoretically explain the impact of Allee effect on the system. By proving that the co-existence fixed point is a snap-back repeller under appropriate conditions, it is obtained that the system is chaotic. Numerical simulations are completely consistent with all the theoretical analyses. The research results show that the impact of Allee effect on the population system depends not only on the assumption and construction of the system, but also on the system parameter and initial value of the system.

Suggested Citation

  • Zhang, Limin & Wang, Tao, 2023. "Qualitative properties, bifurcations and chaos of a discrete predator–prey system with weak Allee effect on the predator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008962
    DOI: 10.1016/j.chaos.2023.113995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923008962
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marotto, F.R., 2005. "On redefining a snap-back repeller," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 25-28.
    2. Çelik, Canan & Duman, Oktay, 2009. "Allee effect in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1956-1962.
    3. Han, Renji & Dey, Subrata & Banerjee, Malay, 2023. "Spatio-temporal pattern selection in a prey–predator model with hunting cooperation and Allee effect in prey," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    4. Zhang, Limin & Zhang, Chaofeng & Zhao, Min, 2014. "Dynamic complexities in a discrete predator–prey system with lower critical point for the prey," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 119-131.
    5. Huang, Tousheng & Yang, Hongju & Zhang, Huayong & Cong, Xuebing & Pan, Ge, 2018. "Diverse self-organized patterns and complex pattern transitions in a discrete ratio-dependent predator–prey system," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 141-158.
    6. Li, Xiaoshuang & Pang, Danfeng & Wallhead, Philip & Bellerby, Richard Garth James, 2023. "Dynamics of an aquatic diffusive predator–prey model with double Allee effect and pH-dependent capture rate," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Zhang, Limin & Zhang, Chaofeng & He, Zhirong, 2019. "Codimension-one and codimension-two bifurcations of a discrete predator–prey system with strong Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 155-178.
    8. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    9. Luo, Demou & Wang, Qiru, 2021. "Global dynamics of a Beddington–DeAngelis amensalism system with weak Allee effect on the first species," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Huayong & Guo, Fenglu & Zou, Hengchao & Zhao, Lei & Wang, Zhongyu & Yuan, Xiaotong & Liu, Zhao, 2024. "Refuge-driven spatiotemporal chaos in a discrete predator-prey system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamotsu Onozaki, 2018. "Nonlinearity, Bounded Rationality, and Heterogeneity," Springer Books, Springer, number 978-4-431-54971-0, January.
    2. Xu, Li & Liu, Jiayi & Zhang, Guang, 2018. "Pattern formation and parameter inversion for a discrete Lotka–Volterra cooperative system," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 226-231.
    3. Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Mohammed O. Al-Kaff & Ghada AlNemer & Hamdy A. El-Metwally & Abd-Elalim A. Elsadany & Elmetwally M. Elabbasy, 2024. "Dynamic Behavior and Bifurcation Analysis of a Modified Reduced Lorenz Model," Mathematics, MDPI, vol. 12(9), pages 1-20, April.
    5. Jiang, Guirong & Yang, Qigui, 2009. "Complex dynamics in a linear impulsive system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2341-2353.
    6. Hu, Zengyun & Teng, Zhidong & Zhang, Tailei & Zhou, Qiming & Chen, Xi, 2017. "Globally asymptotically stable analysis in a discrete time eco-epidemiological system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 20-31.
    7. Zhang, Limin & Zhang, Chaofeng & He, Zhirong, 2019. "Codimension-one and codimension-two bifurcations of a discrete predator–prey system with strong Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 155-178.
    8. Liang, Wei & Lv, Xiaolin, 2022. "Li-Yorke chaos in a class of controlled delay difference equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Tousheng Huang & Huayong Zhang & Xuebing Cong & Ge Pan & Xiumin Zhang & Zhao Liu, 2019. "Exploring Spatiotemporal Complexity of a Predator-Prey System with Migration and Diffusion by a Three-Chain Coupled Map Lattice," Complexity, Hindawi, vol. 2019, pages 1-19, May.
    10. Ekaterina Ekaterinchuk & Jochen Jungeilges & Tatyana Ryazanova & Iryna Sushko, 2017. "Dynamics of a minimal consumer network with uni-directional influence," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 831-857, November.
    11. Rahman, Aminur & Blackmore, Denis, 2017. "Threshold voltage dynamics of chaotic RS flip-Flops," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 555-566.
    12. Sun, Huijing & Cao, Hongjun, 2007. "Bifurcations and chaos of a delayed ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1383-1393.
    13. Ingrid Kubin & Laura Gardini, 2022. "On the significance of borders: the emergence of endogenous dynamics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(1), pages 41-62, January.
    14. Abernethy, Gavin M. & McCartney, Mark & Glass, David H., 2019. "The role of migration in a spatial extension of the Webworld eco-evolutionary model," Ecological Modelling, Elsevier, vol. 397(C), pages 122-140.
    15. Saifuddin, Md. & Biswas, Santanu & Samanta, Sudip & Sarkar, Susmita & Chattopadhyay, Joydev, 2016. "Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 270-285.
    16. Gardini, Laura & Hommes, Cars & Tramontana, Fabio & de Vilder, Robin, 2009. "Forward and backward dynamics in implicitly defined overlapping generations models," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 110-129, August.
    17. Stankevich, N.V. & Gonchenko, A.S. & Popova, E.S. & Gonchenko, S.V., 2023. "Complex dynamics of the simplest neuron model: Singular chaotic Shilnikov attractor as specific oscillatory neuron activity," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    18. Blé, Gamaliel & Dela-Rosa, Miguel Angel, 2019. "Neimark–Sacker bifurcation in a tritrophic model with defense in the prey," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 124-139.
    19. Matvey Kulakov & Efim Frisman, 2023. "Clustering Synchronization in a Model of the 2D Spatio-Temporal Dynamics of an Age-Structured Population with Long-Range Interactions," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
    20. Dohtani, Akitaka, 2011. "Chaos resulting from nonlinear relations between different variables," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 290-297.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.