IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i11d10.1140_epjb_s10051-024-00815-z.html
   My bibliography  Save this article

Turing patterns in exploited predator–prey systems with habitat loss

Author

Listed:
  • Ramya Seenivasan

    (Vellore Institute of Technology)

  • Prosenjit Paul

    (Vellore Institute of Technology)

Abstract

In this study, we explore the emergence of spatial patterns in a predator–prey model influenced by habitat loss, incorporating the effects of linear diffusion. By examining the stability of the system through the Jacobian matrix, we derive conditions for the occurrence of both Hopf and Turing bifurcations using analytical and numerical approaches. Numerical simulations yield Hopf bifurcation diagrams, revealing the system’s dynamic responses to varying conditions. Our findings contribute to the understanding of how habitat loss and harvesting affect the spatial dynamics in predator–prey systems, which are described by partial differential equations (PDEs) under flux boundary conditions. We also investigate the impact of habitat loss due to harvesting on spatial patterns, identifying formations such as spots and stripes as a result of changes in harvesting efforts. We analytically derive the conditions for Turing instability, which are confirmed through numerical validation.

Suggested Citation

  • Ramya Seenivasan & Prosenjit Paul, 2024. "Turing patterns in exploited predator–prey systems with habitat loss," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(11), pages 1-15, November.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:11:d:10.1140_epjb_s10051-024-00815-z
    DOI: 10.1140/epjb/s10051-024-00815-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00815-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00815-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, Tau Keong & Safuan, Hamizah M., 2019. "Harvesting in a toxicated intraguild predator–prey fishery model with variable carrying capacity," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 158-168.
    2. Wang, Weiming & Zhang, Lei & Wang, Hailing & Li, Zhenqing, 2010. "Pattern formation of a predator–prey system with Ivlev-type functional response," Ecological Modelling, Elsevier, vol. 221(2), pages 131-140.
    3. Ghorai, Santu & Poria, Swarup, 2016. "Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 421-429.
    4. Bhunia, Bidhan & Ghorai, Santu & Kar, Tapan Kumar & Biswas, Samir & Bhutia, Lakpa Thendup & Debnath, Papiya, 2023. "A study of a spatiotemporal delayed predator–prey model with prey harvesting: Constant and periodic diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhunia, Bidhan & Ghorai, Santu & Kar, Tapan Kumar & Biswas, Samir & Bhutia, Lakpa Thendup & Debnath, Papiya, 2023. "A study of a spatiotemporal delayed predator–prey model with prey harvesting: Constant and periodic diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Sajan, & Anshu, & Dubey, Balram, 2024. "Study of a cannibalistic prey–predator model with Allee effect in prey under the presence of diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Ghorai, Santu & Chakraborty, Bhaskar & Bairagi, Nandadulal, 2021. "Preferential selection of zooplankton and emergence of spatiotemporal patterns in plankton population," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    4. Ghorai, Santu & Bairagi, Nandadulal, 2022. "Instabilities in hyperbolic reaction–diffusion system with cross diffusion and species-dependent inertia," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    5. Ding, Linglong & Zhang, Xuebing & Lv, Guangying, 2024. "Dynamics of a plankton community with delay and herd-taxis," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    6. Batabyal, Saikat, 2021. "COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    7. Souna, Fethi & Belabbas, Mustapha & Menacer, Youssaf, 2023. "Complex pattern formations induced by the presence of cross-diffusion in a generalized predator–prey model incorporating the Holling type functional response and generalization of habitat complexity e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 597-618.
    8. Fasani, Stefano & Rinaldi, Sergio, 2011. "Factors promoting or inhibiting Turing instability in spatially extended prey–predator systems," Ecological Modelling, Elsevier, vol. 222(18), pages 3449-3452.
    9. Song, Li-Peng & Zhang , Rong-Ping & Feng , Li-Ping & Shi, Qiong, 2017. "Pattern dynamics of a spatial epidemic model with time delay," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 390-399.
    10. Zhao, Qiuyue & Liu, Shutang & Tian, Dadong, 2018. "Dynamic behavior analysis of phytoplankton–zooplankton system with cell size and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 160-168.
    11. Yang, Ruizhi & Ma, Jian, 2018. "Analysis of a diffusive predator-prey system with anti-predator behaviour and maturation delay," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 128-139.
    12. Batabyal, Saikat & Jana, Debaldev & Upadhyay, Ranjit Kumar, 2021. "Diffusion driven finite time blow-up and pattern formation in a mutualistic preys-sexually reproductive predator system: A comparative study," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    13. Ghosh, Joydev & Sahoo, Banshidhar & Poria, Swarup, 2017. "Prey-predator dynamics with prey refuge providing additional food to predator," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 110-119.
    14. Chen, Mengxin & Wu, Ranchao & Chen, Liping, 2020. "Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    15. Li, Qiang & Liu, Zhijun & Yuan, Sanling, 2019. "Cross-diffusion induced Turing instability for a competition model with saturation effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 64-77.
    16. Hu, Junlang & Zhu, Linhe, 2021. "Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay in both network and non-network environments," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    17. D.L. DeAngelis & Bo Zhang & Wei-Ming Ni & Yuanshi Wang, 2020. "Carrying Capacity of a Population Diffusing in a Heterogeneous Environment," Mathematics, MDPI, vol. 8(1), pages 1-12, January.
    18. Ghorai, Santu & Poria, Swarup, 2016. "Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey–predator system supplying additional food," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 57-67.
    19. Li, Meifeng & Han, Bo & Xu, Li & Zhang, Guang, 2013. "Spiral patterns near Turing instability in a discrete reaction diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 1-6.
    20. Yangyang Shao & Yan Meng & Xinyue Xu, 2022. "Turing Instability and Spatiotemporal Pattern Formation Induced by Nonlinear Reaction Cross-Diffusion in a Predator–Prey System with Allee Effect," Mathematics, MDPI, vol. 10(9), pages 1-15, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:11:d:10.1140_epjb_s10051-024-00815-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.