IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v225y2024icp78-97.html
   My bibliography  Save this article

Pattern formation and delay-induced instability in a Leslie–Gower type prey–predator system with Smith growth function

Author

Listed:
  • Kumar, Vikas

Abstract

In this article, we have investigated the spatiotemporal dynamics and delay-induced instability of a Leslie–Gower type prey–predator model under the influence of environmental toxicants with Smith growth function. This growth function is more realistic than logistic growth as it better describes the growth of the biological population. It has been used where the growth limitations are based on the proportion of available resources not utilized. A few works of Smith’s growth models are reported in the literature. Therefore, spatiotemporal dynamics and pattern formation with delay effect remain an exciting area of research, which motivates the present work. This work has studied two types of dynamical systems: (i) an ordinary differential temporal system with time delay and (ii) a reaction–diffusion system with time delay. The existence of equilibrium points and their stability conditions are discussed. Hopf bifurcation emerges in both proposed systems with respect to delay parameter. The stability and direction of Hopf bifurcation and delay–diffusion-driven instability have been investigated for the reaction–diffusion system. Numerical simulation is performed to support the analytical results and theorems. Moreover, the existence of Hopf and delay-induced instability are proved numerically. Interesting one-dimensional regular and irregular stripe patterns are obtained for increased values of the time delay parameter. Also, the presence of natural toxicants has a negative impact on the growth of prey–predator species.

Suggested Citation

  • Kumar, Vikas, 2024. "Pattern formation and delay-induced instability in a Leslie–Gower type prey–predator system with Smith growth function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 78-97.
  • Handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:78-97
    DOI: 10.1016/j.matcom.2024.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424001770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:78-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.