IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i17p3171-d905708.html
   My bibliography  Save this article

Pattern Dynamics of Cross Diffusion Predator–Prey System with Strong Allee Effect and Hunting Cooperation

Author

Listed:
  • Meng Zhu

    (College of Mathematics and Physics, Wenzhou University, Wenzhou 325000, China)

  • Jing Li

    (School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325000, China)

  • Xinze Lian

    (School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325000, China)

Abstract

In this paper, we consider a Leslie–Gower cross diffusion predator–prey model with a strong Allee effect and hunting cooperation. We mainly investigate the effects of self diffusion and cross diffusion on the stability of the homogeneous state point and processes of pattern formation. Using eigenvalue theory and Routh–Hurwitz criterion, we analyze the local stability of positive equilibrium solutions. We give the conditions of Turing instability caused by self diffusion and cross diffusion in detail. In order to discuss the influence of self diffusion and cross diffusion, we choose self diffusion coefficient and cross diffusion coefficient as the main control parameters. Through a series of numerical simulations, rich Turing structures in the parameter space were obtained, including hole pattern, strip pattern and dot pattern. Furthermore, We illustrate the spatial pattern through numerical simulation. The results show that the dynamics of the model exhibits that the self diffusion and cross diffusion control not only form the growth of dots, stripes, and holes, but also self replicating spiral pattern growth. These results indicate that self diffusion and cross diffusion have important effects on the formation of spatial patterns.

Suggested Citation

  • Meng Zhu & Jing Li & Xinze Lian, 2022. "Pattern Dynamics of Cross Diffusion Predator–Prey System with Strong Allee Effect and Hunting Cooperation," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3171-:d:905708
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/17/3171/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/17/3171/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Tingting & Meng, Xinzhu & Hayat, Tasawar & Hobiny, Aatef, 2021. "Stability analysis and optimal harvesting control of a cross-diffusion prey-predator system," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Wu, Daiyong & Zhao, Min, 2019. "Qualitative analysis for a diffusive predator–prey model with hunting cooperative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 299-309.
    3. Liu, Xia & Zhang, Tonghua & Meng, Xinzhu & Zhang, Tongqian, 2018. "Turing–Hopf bifurcations in a predator–prey model with herd behavior, quadratic mortality and prey-taxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 446-460.
    4. Xinze Lian & Yanhong Yue & Hailing Wang, 2012. "Pattern Formation in a Cross-Diffusive Ratio-Dependent Predator-Prey Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-13, November.
    5. Nawaf N. Hamadneh & Muhammad Tahir & Waqar A. Khan, 2021. "Using Artificial Neural Network with Prey Predator Algorithm for Prediction of the COVID-19: The Case of Brazil and Mexico," Mathematics, MDPI, vol. 9(2), pages 1-14, January.
    6. Peng, Yahong & Ling, Heyang, 2018. "Pattern formation in a ratio-dependent predator-prey model with cross-diffusion," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 307-318.
    7. Yan, Xiao & Maimaiti, Yimamu & Yang, Wenbin, 2022. "Stationary pattern and bifurcation of a Leslie–Gower predator–prey model with prey-taxis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 163-192.
    8. Yan, Shuixian & Jia, Dongxue & Zhang, Tonghua & Yuan, Sanling, 2020. "Pattern dynamics in a diffusive predator-prey model with hunting cooperations," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Yu & Yahui Chen & You Zhou, 2023. "Cross-Diffusion-Induced Turing Instability in a Two-Prey One-Predator System," Mathematics, MDPI, vol. 11(11), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Souna, Fethi & Belabbas, Mustapha & Menacer, Youssaf, 2023. "Complex pattern formations induced by the presence of cross-diffusion in a generalized predator–prey model incorporating the Holling type functional response and generalization of habitat complexity e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 597-618.
    2. Yanfei Du & Ben Niu & Junjie Wei, 2021. "Dynamics in a Predator–Prey Model with Cooperative Hunting and Allee Effect," Mathematics, MDPI, vol. 9(24), pages 1-40, December.
    3. Djilali, Salih & Cattani, Carlo, 2021. "Patterns of a superdiffusive consumer-resource model with hunting cooperation functional response," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Shivam, & Singh, Kuldeep & Kumar, Mukesh & Dubey, Ramu & Singh, Teekam, 2022. "Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Wang, Henan & Liu, Ping, 2023. "Pattern dynamics of a predator–prey system with cross-diffusion, Allee effect and generalized Holling IV functional response," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    6. Mondal, Argha & Hens, Chittaranjan & Mondal, Arnab & Antonopoulos, Chris G., 2021. "Spatiotemporal instabilities and pattern formation in systems of diffusively coupled Izhikevich neurons," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Tian, Yuan & Yan, Xinrui & Sun, Kaibiao, 2024. "Dual effects of additional food supply and threshold control on the dynamics of a Leslie–Gower model with pest herd behavior," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    8. Tian, Yuan & Li, Huanmeng & Sun, Kaibiao, 2024. "Complex dynamics of a fishery model: Impact of the triple effects of fear, cooperative hunting and intermittent harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 31-48.
    9. Yimamu Maimaiti & Wang Zhang & Ahmadjan Muhammadhaji, 2023. "Stationary Pattern and Global Bifurcation for a Predator–Prey Model with Prey-Taxis and General Class of Functional Responses," Mathematics, MDPI, vol. 11(22), pages 1-21, November.
    10. Shi, Yu & Luo, Xiao-Feng & Zhang, Yong-Xin & Sun, Gui-Quan, 2023. "An indicator of Crohn’s disease severity based on Turing patterns," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    11. Liu, Yanwei & Zhang, Tonghua & Liu, Xia, 2020. "Investigating the interactions between Allee effect and harvesting behaviour of a single species model: An evolutionary dynamics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    12. Cristina Gutiérrez & Carmen Minuesa, 2020. "A Predator–Prey Two-Sex Branching Process," Mathematics, MDPI, vol. 8(9), pages 1-26, August.
    13. Guo, Xiaoxia & Zhu, Chunjuan & Ruan, Dehao, 2019. "Dynamic behaviors of a predator–prey model perturbed by a complex type of noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1024-1037.
    14. Li, Peiluan & Gao, Rong & Xu, Changjin & Li, Ying & Akgül, Ali & Baleanu, Dumitru, 2023. "Dynamics exploration for a fractional-order delayed zooplankton–phytoplankton system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    15. Yan, Shuixian & Jia, Dongxue & Zhang, Tonghua & Yuan, Sanling, 2020. "Pattern dynamics in a diffusive predator-prey model with hunting cooperations," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    16. Yoshihiko Kadoya & Somtip Watanapongvanich & Pattaphol Yuktadatta & Pongpat Putthinun & Stella T. Lartey & Mostafa Saidur Rahim Khan, 2021. "Willing or Hesitant? A Socioeconomic Study on the Potential Acceptance of COVID-19 Vaccine in Japan," IJERPH, MDPI, vol. 18(9), pages 1-18, May.
    17. Yangyang Shao & Yan Meng & Xinyue Xu, 2022. "Turing Instability and Spatiotemporal Pattern Formation Induced by Nonlinear Reaction Cross-Diffusion in a Predator–Prey System with Allee Effect," Mathematics, MDPI, vol. 10(9), pages 1-15, May.
    18. Wang, Fatao & Yang, Ruizhi, 2023. "Spatial pattern formation driven by the cross-diffusion in a predator–prey model with Holling type functional response," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    19. Djilali, Salih, 2019. "Impact of prey herd shape on the predator-prey interaction," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 139-148.
    20. Sajan, & Anshu, & Dubey, Balram, 2024. "Study of a cannibalistic prey–predator model with Allee effect in prey under the presence of diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3171-:d:905708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.