IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v179y2024ics0960077924000092.html
   My bibliography  Save this article

Periodic and chaotic spiking behaviors in a simplified memristive Hodgkin-Huxley circuit

Author

Listed:
  • Xu, Quan
  • Wang, Yiteng
  • Wu, Huagan
  • Chen, Mo
  • Chen, Bei

Abstract

The famous Hodgkin-Huxley circuit contains two time-varying resistors to describe the electrophysiological characteristics of sodium and potassium ion channels. But the time-varying resistors are expressed by mixed exponential equations, which are unavailable to directly implement in analog circuit and hinders hardware application of the Hodgkin-Huxley circuit. To hit this issue, a simplified memristive Hodgkin-Huxley (m-HH) circuit is proposed, which only involves two locally active memristors (LAMs) to depict the sodium and potassium ion channels, a capacitor to describe the neuron membrane, a DC current to represent external stimulus, and two DC voltages to express the reversal potentials. MATLAB-based numerical simulations and analog circuit-based hardware measurements display that the simplified m-HH circuit can generate memristor parameter- and DC current-related periodic spiking behaviors with different periodicities and chaotic spiking behavior. This delights that electrophysiological characteristics of ion channels and external stimulus can be employed for regulating these periodic and chaotic spiking behaviors. It is interesting that the simplified m-HH circuit can generate frequency self-adaptation and coexisting firing patterns. The inter-spike interval bifurcation diagram shows that the frequency of the periodic spiking behavior increases with the increase of externally applied DC current. Besides, the hybrid parameter bifurcation diagram displays that the simplified m-HH circuit can generate memristor initial state-related coexisting firing patterns of period-6 with chaos, period-3 with chaos, and period-3 with period-8. These offer us the unique insight into explaining some biological firing patterns. The most significance is that the analog hardware circuit is feasible in reproducing these periodic and chaotic spiking behaviors and benefits for developing spiking-based neuromorphic hardware.

Suggested Citation

  • Xu, Quan & Wang, Yiteng & Wu, Huagan & Chen, Mo & Chen, Bei, 2024. "Periodic and chaotic spiking behaviors in a simplified memristive Hodgkin-Huxley circuit," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:chsofr:v:179:y:2024:i:c:s0960077924000092
    DOI: 10.1016/j.chaos.2024.114458
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924000092
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suhas Kumar & John Paul Strachan & R. Stanley Williams, 2017. "Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing," Nature, Nature, vol. 548(7667), pages 318-321, August.
    2. Kafraj, Mohadeseh Shafiei & Parastesh, Fatemeh & Jafari, Sajad, 2020. "Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    3. Wei Yi & Kenneth K. Tsang & Stephen K. Lam & Xiwei Bai & Jack A. Crowell & Elias A. Flores, 2018. "Biological plausibility and stochasticity in scalable VO2 active memristor neurons," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Minati, Ludovico & Mancinelli, Mattia & Frasca, Mattia & Bettotti, Paolo & Pavesi, Lorenzo, 2021. "An analog electronic emulator of non-linear dynamics in optical microring resonators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Lai, Qiang & Lai, Cong & Zhang, Hui & Li, Chunbiao, 2022. "Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Peng Yao & Huaqiang Wu & Bin Gao & Jianshi Tang & Qingtian Zhang & Wenqiang Zhang & J. Joshua Yang & He Qian, 2020. "Fully hardware-implemented memristor convolutional neural network," Nature, Nature, vol. 577(7792), pages 641-646, January.
    8. Vinod K. Sangwan & Hong-Sub Lee & Hadallia Bergeron & Itamar Balla & Megan E. Beck & Kan-Sheng Chen & Mark C. Hersam, 2018. "Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide," Nature, Nature, vol. 554(7693), pages 500-504, February.
    9. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Alexander Serb & Johannes Bill & Ali Khiat & Radu Berdan & Robert Legenstein & Themis Prodromakis, 2016. "Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    11. An, Xinlei & Qiao, Shuai, 2021. "The hidden, period-adding, mixed-mode oscillations and control in a HR neuron under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    12. Ying, Jiajie & Min, Fuhong & Wang, Guangyi, 2023. "Neuromorphic behaviors of VO2 memristor-based neurons," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dang, Shihong & Bayani, Atiyeh & Tian, Huaigu & Wang, Zhen & Parastesh, Fatemeh & Nazarimehr, Fahimeh, 2024. "Investigating the route to synchronization in real-world neuronal networks of autaptic photosensitive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    2. Hu, Jingting & Bao, Han & Xu, Quan & Chen, Mo & Bao, Bocheng, 2024. "Synchronization generations and transitions in two map-based neurons coupled with locally active memristor," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Xu, Quan & Wang, Kai & Chen, Mo & Parastesh, Fatemeh & Wang, Ning, 2024. "Bursting and spiking activities in a Wilson neuron circuit with memristive sodium and potassium ion channels," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    4. Zhang, Jianlin & Bao, Han & Yu, Xihong & Chen, Bei, 2024. "Heterogeneous coexistence of extremely many attractors in adaptive synapse neuron considering memristive EMI," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    5. Pietro Belleri & Judith Pons i Tarrés & Iain McCulloch & Paul W. M. Blom & Zsolt M. Kovács-Vajna & Paschalis Gkoupidenis & Fabrizio Torricelli, 2024. "Unravelling the operation of organic artificial neurons for neuromorphic bioelectronics," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Zhou, Wei & Jin, Peipei & Dong, Yujiao & Liang, Yan & Wang, Guangyi, 2023. "Memristor neurons and their coupling networks based on Edge of Chaos Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    7. Shi, Shuyu & Liang, Yan & Li, Yiqing & Lu, Zhenzhou & Dong, Yujiao, 2024. "A neuron circuit based on memristor and negative capacitor: Dynamics analysis and hardware implementation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    8. Li, Xing & Zou, Jianxun & Feng, Zhe & Wu, Zuheng & Xu, Zuyu & Yang, Fei & Zhu, Yunlai & Dai, Yuehua, 2023. "Thermal design engineering for improving the variation of memristor threshold," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    9. Dong, Yujiao & Yang, Shuting & Liang, Yan & Wang, Guangyi, 2022. "Neuromorphic dynamics near the edge of chaos in memristive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    10. Kyung Seok Woo & Alan Zhang & Allison Arabelo & Timothy D. Brown & Minseong Park & A. Alec Talin & Elliot J. Fuller & Ravindra Singh Bisht & Xiaofeng Qian & Raymundo Arroyave & Shriram Ramanathan & Lu, 2024. "True random number generation using the spin crossover in LaCoO3," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Fengling Jia & Peiyan He & Lixin Yang, 2024. "A Novel Coupled Memristive Izhikevich Neuron Model and Its Complex Dynamics," Mathematics, MDPI, vol. 12(14), pages 1-17, July.
    12. Yue Yang & Fangduo Zhu & Xumeng Zhang & Pei Chen & Yongzhou Wang & Jiaxue Zhu & Yanting Ding & Lingli Cheng & Chao Li & Hao Jiang & Zhongrui Wang & Peng Lin & Tuo Shi & Ming Wang & Qi Liu & Ningsheng , 2024. "Firing feature-driven neural circuits with scalable memristive neurons for robotic obstacle avoidance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Ushakov, Yury & Akther, Amir & Borisov, Pavel & Pattnaik, Debi & Savel’ev, Sergey & Balanov, Alexander G., 2021. "Deterministic mechanisms of spiking in diffusive memristors," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    14. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Ying, Jiajie & Min, Fuhong & Wang, Guangyi, 2023. "Neuromorphic behaviors of VO2 memristor-based neurons," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    16. Tianyu Wang & Jialin Meng & Xufeng Zhou & Yue Liu & Zhenyu He & Qi Han & Qingxuan Li & Jiajie Yu & Zhenhai Li & Yongkai Liu & Hao Zhu & Qingqing Sun & David Wei Zhang & Peining Chen & Huisheng Peng & , 2022. "Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Thomas Dalgaty & Filippo Moro & Yiğit Demirağ & Alessio Pra & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Sang Hyun Sung & Tae Jin Kim & Hyera Shin & Tae Hong Im & Keon Jae Lee, 2022. "Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Shao, Yan & Wu, Fuqiang & Wang, Qingyun, 2024. "Dynamics and stability of neural systems with indirect interactions involved energy levels," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    20. Mingrui Jiang & Keyi Shan & Chengping He & Can Li, 2023. "Efficient combinatorial optimization by quantum-inspired parallel annealing in analogue memristor crossbar," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:179:y:2024:i:c:s0960077924000092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.