IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924010221.html
   My bibliography  Save this article

Synchronization evaluation of memristive photosensitive neurons in multi-neuronal systems

Author

Listed:
  • Zhou, Shu
  • Cheng, Zebang
  • Huang, Guodong
  • Zhu, Rui
  • Chai, Yuan

Abstract

At the forefront of brain-computer interface (BCI) technology exploration, the synchronization phenomenon in neural networks demonstrates significant potential for application. This paper focuses on the memory characteristics and nonlinear dynamic behavior of memristors, an emerging electronic component. By innovatively integrating memristors, phototubes, and FitzHugh-Nagumo (FHN) circuits, we construct a memristive photosensitive neuron (MPN) model, aiming to explore its unique role in neural network synchronization. Utilizing the memristors' inherent memory capabilities and nonlinear properties, the MPN model mimics the dynamic behavior of biological neurons. Experiments show that synchronization is highly sensitive to the memristor's initial values, revealing intricate synchronization regulation mechanisms. Furthermore, we find that chaotic electrical currents, as environmental disturbances, have dual effects—either promoting or inhibiting MPN network synchronization—depending on specific parametric conditions. To simulate a realistic biological neural network and achieve efficient coupling among multiple MPN units, this paper adopts a Hopfield network structure. The results indicate that this structure significantly enhances the synchronization stability of the system, reduces sensitivity to initial conditions, and mitigates the adverse effects of chaotic currents. This research not only enhances our understanding of neural network synchronization but also provides novel theoretical support and technical pathways for the development of BCI technology, indicating broad application prospects in neuroscience, rehabilitative medicine, and other fields.

Suggested Citation

  • Zhou, Shu & Cheng, Zebang & Huang, Guodong & Zhu, Rui & Chai, Yuan, 2024. "Synchronization evaluation of memristive photosensitive neurons in multi-neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924010221
    DOI: 10.1016/j.chaos.2024.115470
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Fuqiang & Kang, Ting & Shao, Yan & Wang, Qingyun, 2023. "Stability of Hopfield neural network with resistive and magnetic coupling," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Semenov, Danila M. & Fradkov, Alexander L., 2021. "Adaptive synchronization in the complex heterogeneous networks of Hindmarsh–Rose neurons," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Xu, Ying & Guo, Yeye & Ren, Guodong & Ma, Jun, 2020. "Dynamics and stochastic resonance in a thermosensitive neuron," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    4. Deng, Quanli & Wang, Chunhua & Lin, Hairong, 2024. "Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    5. Zhou, Ping & Yao, Zhao & Ma, Jun & Zhu, Zhigang, 2021. "A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Yu, Dong & Lu, Lulu & Wang, Guowei & Yang, Lijian & Jia, Ya, 2021. "Synchronization mode transition induced by bounded noise in multiple time-delays coupled FitzHugh–Nagumo model," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    7. Bao, Bocheng & Chen, Liuhui & Bao, Han & Chen, Mo & Xu, Quan, 2024. "Bifurcations to bursting oscillations in memristor-based FitzHugh-Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    8. Huang, Guodong & Zhou, Shu & Zhu, Rui & Wang, Yunhai & Chai, Yuan, 2024. "Stability and complexity evaluation of attractors in a controllable piezoelectric Fitzhugh-Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    9. Xu, Quan & Wang, Yiteng & Wu, Huagan & Chen, Mo & Chen, Bei, 2024. "Periodic and chaotic spiking behaviors in a simplified memristive Hodgkin-Huxley circuit," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    10. Yao, Zhao & Wang, Chunni, 2021. "Control the collective behaviors in a functional neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Liu, Zhilong & Zhou, Ping & Ma, Jun & Hobiny, Aatef & Alzahrani, Faris, 2020. "Autonomic learning via saturation gain method, and synchronization between neurons," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    12. Efimova, Natalia & Tyukin, Ivan & Kazantsev, Victor, 2024. "Spiking phase control in synaptically coupled Hodgkin–Huxley neurons," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Feifei & Song, Xinlin & Yu, Zhenhua, 2024. "Dynamics of a functional neuron model with double membranes," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    2. Yao, Zhao & Wang, Chunni, 2022. "Collective behaviors in a multiple functional network with hybrid synapses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    3. Zhou, Ping & Hu, Xikui & Zhu, Zhigang & Ma, Jun, 2021. "What is the most suitable Lyapunov function?," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Fossi, Jules Tagne & Njitacke, Zeric Tabekoueng & Tankeu, William Nguimeya & Mendimi, Joseph Marie & Awrejcewicz, Jan & Atangana, Jacques, 2023. "Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    7. Feifei Yang & Xikui Hu & Guodong Ren & Jun Ma, 2023. "Synchronization and patterns in a memristive network in noisy electric field," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-14, June.
    8. Guo, Yeye & Wang, Chunni & Yao, Zhao & Xu, Ying, 2022. "Desynchronization of thermosensitive neurons by using energy pumping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    9. Ma, Xiaowen & Xu, Ying, 2022. "Taming the hybrid synapse under energy balance between neurons," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Wu, Fuqiang & Guo, Yitong & Ma, Jun & Jin, Wuyin, 2023. "Synchronization of bursting memristive Josephson junctions via resistive and magnetic coupling," Applied Mathematics and Computation, Elsevier, vol. 455(C).
    11. Zhou, Ping & Yao, Zhao & Ma, Jun & Zhu, Zhigang, 2021. "A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    12. Zhang, Shaohua & Wang, Cong & Zhang, Hongli & Lin, Hairong, 2024. "Collective dynamics of adaptive memristor synapse-cascaded neural networks based on energy flow," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    13. Gao, Chenghua & Qiao, Shuai & An, Xinlei, 2022. "Global multistability and mechanisms of a memristive autapse-based Filippov Hindmash-Rose neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    14. Jules Tagne Fossi & Vandi Deli & Hélène Carole Edima & Zeric Tabekoueng Njitacke & Florent Feudjio Kemwoue & Jacques Atangana, 2022. "Phase synchronization between two thermo-photoelectric neurons coupled through a Josephson Junction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-17, April.
    15. Sun, Guoping & Yang, Feifei & Ren, Guodong & Wang, Chunni, 2023. "Energy encoding in a biophysical neuron and adaptive energy balance under field coupling," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    16. Mondal, Arnab & Upadhyay, Ranjit Kumar & Mondal, Argha & Sharma, Sanjeev Kumar, 2022. "Emergence of Turing patterns and dynamic visualization in excitable neuron model," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    17. Yang, Feifei & Ma, Jun & Wu, Fuqiang, 2024. "Review on memristor application in neural circuit and network," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    18. Wang, Guowei & Wu, Yong & Xiao, Fangli & Ye, Zhiqiu & Jia, Ya, 2022. "Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    19. Yao, Zhao & Wang, Chunni, 2021. "Control the collective behaviors in a functional neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924010221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.