IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics096007792400777x.html
   My bibliography  Save this article

Investigating the route to synchronization in real-world neuronal networks of autaptic photosensitive neurons

Author

Listed:
  • Dang, Shihong
  • Bayani, Atiyeh
  • Tian, Huaigu
  • Wang, Zhen
  • Parastesh, Fatemeh
  • Nazarimehr, Fahimeh

Abstract

The dynamics of synchronization transitions in two real-world neuronal networks, the rhesus macaque brain and cortical networks, are investigated. These networks are examples of neuronal networks, which are mathematical representations of the brain’s connectivity. The focus lies on a neuron model that incorporates autaptic regulation with a delay component and photosensitive neuron models. These two networks exhibit distinct behaviors during their synchronization transitions. One network displays an explosive transition-a sudden jump in synchronization evolution. The other network demonstrates an approximately continuous transition characterized by gradual changes. These observed explosive and continuous synchronization offer valuable insights into how network topology, encoded in the Laplacian matrix eigenvalues, influences neuronal behavior.

Suggested Citation

  • Dang, Shihong & Bayani, Atiyeh & Tian, Huaigu & Wang, Zhen & Parastesh, Fatemeh & Nazarimehr, Fahimeh, 2024. "Investigating the route to synchronization in real-world neuronal networks of autaptic photosensitive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s096007792400777x
    DOI: 10.1016/j.chaos.2024.115225
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792400777X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Quan & Wang, Yiteng & Wu, Huagan & Chen, Mo & Chen, Bei, 2024. "Periodic and chaotic spiking behaviors in a simplified memristive Hodgkin-Huxley circuit," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    2. Dai, Xiangfeng & Li, Xuelong & Gutiérrez, Ricardo & Guo, Hao & Jia, Danyang & Perc, Matjaž & Manshour, Pouya & Wang, Zhen & Boccaletti, Stefano, 2020. "Explosive synchronization in populations of cooperative and competitive oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    3. Li, Kexin & Bao, Bocheng & Ma, Jun & Chen, Mo & Bao, Han, 2022. "Synchronization transitions in a discrete memristor-coupled bi-neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    4. Xu, Quan & Wang, Kai & Chen, Mo & Parastesh, Fatemeh & Wang, Ning, 2024. "Bursting and spiking activities in a Wilson neuron circuit with memristive sodium and potassium ion channels," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Shir Shahal & Ateret Wurzberg & Inbar Sibony & Hamootal Duadi & Elad Shniderman & Daniel Weymouth & Nir Davidson & Moti Fridman, 2020. "Synchronization of complex human networks," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Baysal, Veli & Solmaz, Ramazan & Ma, Jun, 2023. "Investigation of chaotic resonance in Type-I and Type-II Morris-Lecar neurons," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    7. Zhou, Ping & Xu, Ying & Ma, Jun, 2023. "Dynamical and coherence resonance in a photoelectric neuron under autaptic regulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 620(C).
    8. Juan Chen & Jun-an Lu & Choujun Zhan & Guanrong Chen, 2012. "Laplacian Spectra and Synchronization Processes on Complex Networks," Springer Optimization and Its Applications, in: My T. Thai & Panos M. Pardalos (ed.), Handbook of Optimization in Complex Networks, edition 1, chapter 0, pages 81-113, Springer.
    9. Baysal, Veli & Calim, Ali, 2023. "Stochastic resonance in a single autapse–coupled neuron," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    10. Klinshov, Vladimir V. & Kovalchuk, Andrey V. & Soloviev, Igor A. & Maslennikov, Oleg V. & Franović, Igor & Perc, Matjaž, 2024. "Extending dynamic memory of spiking neuron networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    11. Batista, C.A.S. & Batista, A.M. & de Pontes, J.C.A. & Lopes, S.R. & Viana, R.L., 2009. "Bursting synchronization in scale-free networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2220-2225.
    12. Baysal, Veli & Yılmaz, Ergin, 2021. "Chaotic Signal Induced Delay Decay in Hodgkin-Huxley Neuron," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    13. Bayani, Atiyeh & Alexander, Prasina & Azarnoush, Hamed & Rajagopal, Karthikeyan & Jafari, Sajad & Nazarimehr, Fahimeh, 2023. "Designing networks with specific synchronization transitions independent of the system’s dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Jingting & Bao, Han & Xu, Quan & Chen, Mo & Bao, Bocheng, 2024. "Synchronization generations and transitions in two map-based neurons coupled with locally active memristor," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    2. Bayani, Atiyeh & Jafari, Sajad & Azarnoush, Hamed & Nazarimehr, Fahimeh & Boccaletti, Stefano & Perc, Matjaž, 2023. "Explosive synchronization dependence on initial conditions: The minimal Kuramoto model," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Bayani, Atiyeh & Alexander, Prasina & Azarnoush, Hamed & Rajagopal, Karthikeyan & Jafari, Sajad & Nazarimehr, Fahimeh, 2023. "Designing networks with specific synchronization transitions independent of the system’s dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    4. Li, Xuening & Xie, Ying & Ye, Zhiqiu & Huang, Weifang & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2024. "Chimera-like state in the bistable excitatory-inhibitory cortical neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    5. Huang, Keyu & Li, Chunbiao & Cen, Xiaoliang & Chen, Guanrong, 2024. "Constructing chaotic oscillators with memory components," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    6. Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. Zhang, Jianlin & Bao, Han & Yu, Xihong & Chen, Bei, 2024. "Heterogeneous coexistence of extremely many attractors in adaptive synapse neuron considering memristive EMI," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    8. Yu, Haitao & Wang, Jiang & Liu, Qiuxiang & Sun, Jianbing & Yu, Haifeng, 2013. "Delay-induced synchronization transitions in small-world neuronal networks with hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 48(C), pages 68-74.
    9. Wu, Huagan & Gu, Jinxiang & Guo, Yixuan & Chen, Mo & Xu, Quan, 2024. "Biphasic action potentials in an individual cellular neural network cell," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    10. Reis, A.S. & Brugnago, E.L. & Viana, R.L. & Batista, A.M. & Iarosz, K.C. & Ferrari, F.A.S. & Caldas, I.L., 2023. "The role of the fitness model in the suppression of neuronal synchronous behavior with three-stage switching control in clustered networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    11. Frolov, Nikita & Rakshit, Sarbendu & Maksimenko, Vladimir & Kirsanov, Daniil & Ghosh, Dibakar & Hramov, Alexander, 2021. "Coexistence of interdependence and competition in adaptive multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    12. Xu, Can & Yu, Huajian & Guan, Shuguang, 2023. "Dynamical origin of the explosive synchronization with partial adaptive coupling," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    13. Abdulaziz S. Alkabaa & Osman Taylan & Mustafa Tahsin Yilmaz & Ehsan Nazemi & El Mostafa Kalmoun, 2022. "An Investigation on Spiking Neural Networks Based on the Izhikevich Neuronal Model: Spiking Processing and Hardware Approach," Mathematics, MDPI, vol. 10(4), pages 1-21, February.
    14. Guy Amichay & Liang Li & Máté Nagy & Iain D. Couzin, 2024. "Revealing the mechanism and function underlying pairwise temporal coupling in collective motion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Parastesh, Fatemeh & Dayani, Zahra & Bahramian, Alireza & Jafari, Sajad & Chen, Guanrong, 2023. "Performance of synchronization in networks of chaotic systems under different PID coupling schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    16. Zhang, Jianlin & Bao, Han & Gu, Jinxiang & Chen, Mo & Bao, Bocheng, 2024. "Multistability and synchronicity of memristor coupled adaptive synaptic neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    17. Liu, Chen & Wang, Jiang & Yu, Haitao & Deng, Bin & Wei, Xile & Sun, Jianbing & Chen, Yingyuan, 2013. "The effects of time delay on the synchronization transitions in a modular neuronal network with hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 47(C), pages 54-65.
    18. Li, Tianyu & Wu, Yong & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2022. "Spike-timing-dependent plasticity enhances chaotic resonance in small-world network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    19. Kaijun Wu & Zhaoxue Huang & Mingjun Yan, 2024. "Dynamic behavior of memristor ML neurons and its application in secure communication," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(7), pages 1-21, July.
    20. Hu Wang & Sha Wang & Yajuan Gu & Yongguang Yu, 2023. "Hopf Bifurcation Analysis of a Two-Dimensional Simplified Hodgkin–Huxley Model," Mathematics, MDPI, vol. 11(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s096007792400777x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.