IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44365-x.html
   My bibliography  Save this article

Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems

Author

Listed:
  • Thomas Dalgaty

    (Université Grenoble Alpes)

  • Filippo Moro

    (Université Grenoble Alpes)

  • Yiğit Demirağ

    (University of Zurich and ETH Zurich)

  • Alessio Pra

    (Université Grenoble Alpes)

  • Giacomo Indiveri

    (University of Zurich and ETH Zurich)

  • Elisa Vianello

    (Université Grenoble Alpes)

  • Melika Payvand

    (University of Zurich and ETH Zurich)

Abstract

The brain’s connectivity is locally dense and globally sparse, forming a small-world graph—a principle prevalent in the evolution of various species, suggesting a universal solution for efficient information routing. However, current artificial neural network circuit architectures do not fully embrace small-world neural network models. Here, we present the neuromorphic Mosaic: a non-von Neumann systolic architecture employing distributed memristors for in-memory computing and in-memory routing, efficiently implementing small-world graph topologies for Spiking Neural Networks (SNNs). We’ve designed, fabricated, and experimentally demonstrated the Mosaic’s building blocks, using integrated memristors with 130 nm CMOS technology. We show that thanks to enforcing locality in the connectivity, routing efficiency of Mosaic is at least one order of magnitude higher than other SNN hardware platforms. This is while Mosaic achieves a competitive accuracy in a variety of edge benchmarks. Mosaic offers a scalable approach for edge systems based on distributed spike-based computing and in-memory routing.

Suggested Citation

  • Thomas Dalgaty & Filippo Moro & Yiğit Demirağ & Alessio Pra & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44365-x
    DOI: 10.1038/s41467-023-44365-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44365-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44365-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vinay Joshi & Manuel Le Gallo & Simon Haefeli & Irem Boybat & S. R. Nandakumar & Christophe Piveteau & Martino Dazzi & Bipin Rajendran & Abu Sebastian & Evangelos Eleftheriou, 2020. "Accurate deep neural network inference using computational phase-change memory," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    3. S. Ambrogio & P. Narayanan & A. Okazaki & A. Fasoli & C. Mackin & K. Hosokawa & A. Nomura & T. Yasuda & A. Chen & A. Friz & M. Ishii & J. Luquin & Y. Kohda & N. Saulnier & K. Brew & S. Choi & I. Ok & , 2023. "An analog-AI chip for energy-efficient speech recognition and transcription," Nature, Nature, vol. 620(7975), pages 768-775, August.
    4. Stefano Ambrogio & Pritish Narayanan & Hsinyu Tsai & Robert M. Shelby & Irem Boybat & Carmelo Nolfo & Severin Sidler & Massimo Giordano & Martina Bodini & Nathan C. P. Farinha & Benjamin Killeen & Chr, 2018. "Equivalent-accuracy accelerated neural-network training using analogue memory," Nature, Nature, vol. 558(7708), pages 60-67, June.
    5. M. Prezioso & F. Merrikh-Bayat & B. D. Hoskins & G. C. Adam & K. K. Likharev & D. B. Strukov, 2015. "Training and operation of an integrated neuromorphic network based on metal-oxide memristors," Nature, Nature, vol. 521(7550), pages 61-64, May.
    6. Rui Wang & Tuo Shi & Xumeng Zhang & Jinsong Wei & Jian Lu & Jiaxue Zhu & Zuheng Wu & Qi Liu & Ming Liu, 2022. "Implementing in-situ self-organizing maps with memristor crossbar arrays for data mining and optimization," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Alexander Serb & Johannes Bill & Ali Khiat & Radu Berdan & Robert Legenstein & Themis Prodromakis, 2016. "Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    8. D. Joksas & P. Freitas & Z. Chai & W. H. Ng & M. Buckwell & C. Li & W. D. Zhang & Q. Xia & A. J. Kenyon & A. Mehonic, 2020. "Committee machines—a universal method to deal with non-idealities in memristor-based neural networks," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    9. Oriol Vinyals & Igor Babuschkin & Wojciech M. Czarnecki & Michaël Mathieu & Andrew Dudzik & Junyoung Chung & David H. Choi & Richard Powell & Timo Ewalds & Petko Georgiev & Junhyuk Oh & Dan Horgan & M, 2019. "Grandmaster level in StarCraft II using multi-agent reinforcement learning," Nature, Nature, vol. 575(7782), pages 350-354, November.
    10. Weier Wan & Rajkumar Kubendran & Clemens Schaefer & Sukru Burc Eryilmaz & Wenqiang Zhang & Dabin Wu & Stephen Deiss & Priyanka Raina & He Qian & Bin Gao & Siddharth Joshi & Huaqiang Wu & H.-S. Philip , 2022. "A compute-in-memory chip based on resistive random-access memory," Nature, Nature, vol. 608(7923), pages 504-512, August.
    11. Peng Yao & Huaqiang Wu & Bin Gao & Jianshi Tang & Qingtian Zhang & Wenqiang Zhang & J. Joshua Yang & He Qian, 2020. "Fully hardware-implemented memristor convolutional neural network," Nature, Nature, vol. 577(7792), pages 641-646, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Peng Chen & Fenghao Liu & Peng Lin & Peihong Li & Yu Xiao & Bihua Zhang & Gang Pan, 2023. "Open-loop analog programmable electrochemical memory array," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Yijun Li & Jianshi Tang & Bin Gao & Jian Yao & Anjunyi Fan & Bonan Yan & Yuchao Yang & Yue Xi & Yuankun Li & Jiaming Li & Wen Sun & Yiwei Du & Zhengwu Liu & Qingtian Zhang & Song Qiu & Qingwen Li & He, 2023. "Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Fadi Jebali & Atreya Majumdar & Clément Turck & Kamel-Eddine Harabi & Mathieu-Coumba Faye & Eloi Muhr & Jean-Pierre Walder & Oleksandr Bilousov & Amadéo Michaud & Elisa Vianello & Tifenn Hirtzlin & Fr, 2024. "Powering AI at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Ruibin Mao & Bo Wen & Arman Kazemi & Yahui Zhao & Ann Franchesca Laguna & Rui Lin & Ngai Wong & Michael Niemier & X. Sharon Hu & Xia Sheng & Catherine E. Graves & John Paul Strachan & Can Li, 2022. "Experimentally validated memristive memory augmented neural network with efficient hashing and similarity search," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Bin Gao & Ying Zhou & Qingtian Zhang & Shuanglin Zhang & Peng Yao & Yue Xi & Qi Liu & Meiran Zhao & Wenqiang Zhang & Zhengwu Liu & Xinyi Li & Jianshi Tang & He Qian & Huaqiang Wu, 2022. "Memristor-based analogue computing for brain-inspired sound localization with in situ training," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Malte J. Rasch & Fabio Carta & Omobayode Fagbohungbe & Tayfun Gokmen, 2024. "Fast and robust analog in-memory deep neural network training," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Malte J. Rasch & Charles Mackin & Manuel Gallo & An Chen & Andrea Fasoli & Frédéric Odermatt & Ning Li & S. R. Nandakumar & Pritish Narayanan & Hsinyu Tsai & Geoffrey W. Burr & Abu Sebastian & Vijay N, 2023. "Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Ik-Jyae Kim & Min-Kyu Kim & Jang-Sik Lee, 2023. "Highly-scaled and fully-integrated 3-dimensional ferroelectric transistor array for hardware implementation of neural networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Xiangjin Wu & Asir Intisar Khan & Hengyuan Lee & Chen-Feng Hsu & Huairuo Zhang & Heshan Yu & Neel Roy & Albert V. Davydov & Ichiro Takeuchi & Xinyu Bao & H.-S. Philip Wong & Eric Pop, 2024. "Novel nanocomposite-superlattices for low energy and high stability nanoscale phase-change memory," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    14. Maldonado, D. & Aguilera-Pedregosa, C. & Vinuesa, G. & García, H. & Dueñas, S. & Castán, H. & Aldana, S. & González, M.B. & Moreno, E. & Jiménez-Molinos, F. & Campabadal, F. & Roldán, J.B., 2022. "An experimental and simulation study of the role of thermal effects on variability in TiN/Ti/HfO2/W resistive switching nonlinear devices," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Seokho Seo & Beomjin Kim & Donghoon Kim & Seungwoo Park & Tae Ryong Kim & Junkyu Park & Hakcheon Jeong & See-On Park & Taehoon Park & Hyeok Shin & Myung-Su Kim & Yang-Kyu Choi & Shinhyun Choi, 2022. "The gate injection-based field-effect synapse transistor with linear conductance update for online training," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Charles Mackin & Malte J. Rasch & An Chen & Jonathan Timcheck & Robert L. Bruce & Ning Li & Pritish Narayanan & Stefano Ambrogio & Manuel Gallo & S. R. Nandakumar & Andrea Fasoli & Jose Luquin & Alexa, 2022. "Optimised weight programming for analogue memory-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Doeon Lee & Minseong Park & Yongmin Baek & Byungjoon Bae & Junseok Heo & Kyusang Lee, 2022. "In-sensor image memorization and encoding via optical neurons for bio-stimulus domain reduction toward visual cognitive processing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Filippo Moro & Emmanuel Hardy & Bruno Fain & Thomas Dalgaty & Paul Clémençon & Alessio Prà & Eduardo Esmanhotto & Niccolò Castellani & François Blard & François Gardien & Thomas Mesquida & François Ru, 2022. "Neuromorphic object localization using resistive memories and ultrasonic transducers," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Long Liu & Di Wang & Dandan Wang & Yan Sun & Huai Lin & Xiliang Gong & Yifan Zhang & Ruifeng Tang & Zhihong Mai & Zhipeng Hou & Yumeng Yang & Peng Li & Lan Wang & Qing Luo & Ling Li & Guozhong Xing & , 2024. "Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spin neuromorphic hardware," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Yongxiang Li & Shiqing Wang & Ke Yang & Yuchao Yang & Zhong Sun, 2024. "An emergent attractor network in a passive resistive switching circuit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44365-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.