IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v137y2020ics0960077920301843.html
   My bibliography  Save this article

Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise

Author

Listed:
  • Kafraj, Mohadeseh Shafiei
  • Parastesh, Fatemeh
  • Jafari, Sajad

Abstract

The neuron's behavior is related to the changes in its complex electrophysiological environment such as variations in ion concentration. In this paper, a three-variable memristive Izhikevich model is proposed to describe the behavior of neurons under electromagnetic induction and noise. This model can represent the effect of internal and external magnetic fields on neurons. The improved model without the external magnetic field can exhibit firing patterns such as regular spiking, resonator, chattering, fast-spiking, chaotic spiking, and chaotic bursts. The presence of the external magnetic field causes the firing pattern of the neuron to change, for example shifting from chaotic firings to the periodic ones or vice versa. Furthermore, the firing rate of the neuron is increased. It is also observed that the external field effect can stimulate the neuron to fire, while in the absence of the external field, it is at rest. Finally, in order to detect the realistic neuron's activities, we examine the effect of Gaussian white noise on the improved model. The results show that the model has more robustness against noise with considering the external magnetic field.

Suggested Citation

  • Kafraj, Mohadeseh Shafiei & Parastesh, Fatemeh & Jafari, Sajad, 2020. "Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:chsofr:v:137:y:2020:i:c:s0960077920301843
    DOI: 10.1016/j.chaos.2020.109782
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920301843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lulu Lu & Ya Jia & Wangheng Liu & Lijian Yang, 2017. "Mixed Stimulus-Induced Mode Selection in Neural Activity Driven by High and Low Frequency Current under Electromagnetic Radiation," Complexity, Hindawi, vol. 2017, pages 1-11, October.
    2. Mohadeseh Shafiei & Fatemeh Parastesh & Mahdi Jalili & Sajad Jafari & Matjaž Perc & Mitja Slavinec, 2019. "Effects of partial time delays on synchronization patterns in Izhikevich neuronal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(2), pages 1-7, February.
    3. Juan Wu & Yong Xu & Jun Ma, 2017. "Lévy noise improves the electrical activity in a neuron under electromagnetic radiation," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-13, March.
    4. Wu, Fuqiang & Ma, Jun & Zhang, Ge, 2019. "A new neuron model under electromagnetic field," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 590-599.
    5. Parastesh, Fatemeh & Azarnoush, Hamed & Jafari, Sajad & Hatef, Boshra & Perc, Matjaž & Repnik, Robert, 2019. "Synchronizability of two neurons with switching in the coupling," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 217-223.
    6. Wei Yi & Kenneth K. Tsang & Stephen K. Lam & Xiwei Bai & Jack A. Crowell & Elias A. Flores, 2018. "Biological plausibility and stochasticity in scalable VO2 active memristor neurons," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    7. Bocheng Bao & Aihuang Hu & Han Bao & Quan Xu & Mo Chen & Huagan Wu, 2018. "Three-Dimensional Memristive Hindmarsh–Rose Neuron Model with Hidden Coexisting Asymmetric Behaviors," Complexity, Hindawi, vol. 2018, pages 1-11, February.
    8. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Tao & Mou, Jun & Banerjee, Santo & Cao, Yinghong, 2023. "Analysis of the functional behavior of fractional-order discrete neuron under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Binchi Wang & Xiaofeng Zhang & Zhigang Zhu & Guodong Ren, 2024. "A new memristive map neuron, self-regulation and coherence resonance," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(8), pages 1-12, August.
    3. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Guo, Yitong & Xie, Ying & Ma, Jun, 2023. "Nonlinear responses in a neural network under spatial electromagnetic radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    5. Muni, Sishu Shankar & Rajagopal, Karthikeyan & Karthikeyan, Anitha & Arun, Sundaram, 2022. "Discrete hybrid Izhikevich neuron model: Nodal and network behaviours considering electromagnetic flux coupling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Xu, Quan & Wang, Yiteng & Wu, Huagan & Chen, Mo & Chen, Bei, 2024. "Periodic and chaotic spiking behaviors in a simplified memristive Hodgkin-Huxley circuit," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    7. Fossi, Jules Tagne & Njitacke, Zeric Tabekoueng & Tankeu, William Nguimeya & Mendimi, Joseph Marie & Awrejcewicz, Jan & Atangana, Jacques, 2023. "Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    8. Fengling Jia & Peiyan He & Lixin Yang, 2024. "A Novel Coupled Memristive Izhikevich Neuron Model and Its Complex Dynamics," Mathematics, MDPI, vol. 12(14), pages 1-17, July.
    9. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Ma, Jun & Guo, Yitong, 2024. "Model approach of electromechanical arm interacted with neural circuit, a minireview," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    11. Yu, Fei & Shen, Hui & Zhang, Zinan & Huang, Yuanyuan & Cai, Shuo & Du, Sichun, 2021. "Dynamics analysis, hardware implementation and engineering applications of novel multi-style attractors in a neural network under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Hu, Xueyan & Ding, Qianming & Wu, Yong & Huang, Weifang & Yang, Lijian & Jia, Ya, 2024. "Dynamical rewiring promotes synchronization in memristive FitzHugh-Nagumo neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    13. Njitacke, Zeric Tabekoueng & Ramakrishnan, Balamurali & Rajagopal, Karthikeyan & Fonzin Fozin, Théophile & Awrejcewicz, Jan, 2022. "Extremely rich dynamics of coupled heterogeneous neurons through a Josephson junction synapse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Wang, Weiping & He, Chang & Wang, Zhen & Hramov, Alexander & Fan, Denggui & Yuan, Manman & Luo, Xiong & Kurths, Jürgen, 2021. "Dynamic analysis of synaptic loss and synaptic compensation in the process of associative memory ability decline in Alzheimer’s disease," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    15. Xu, Quan & Wang, Kai & Chen, Mo & Parastesh, Fatemeh & Wang, Ning, 2024. "Bursting and spiking activities in a Wilson neuron circuit with memristive sodium and potassium ion channels," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    16. Wang, Guowei & Wu, Yong & Xiao, Fangli & Ye, Zhiqiu & Jia, Ya, 2022. "Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Lulu & Ge, Mengyan & Xu, Ying & Jia, Ya, 2019. "Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh–Nagumo model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Dong, Yujiao & Yang, Shuting & Liang, Yan & Wang, Guangyi, 2022. "Neuromorphic dynamics near the edge of chaos in memristive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    4. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Wu, Fuqiang & Hu, Xikui & Ma, Jun, 2022. "Estimation of the effect of magnetic field on a memristive neuron," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    6. Wu, Fuqiang & Zhou, Ping & Alsaedi, Ahmed & Hayat, Tasawar & Ma, Jun, 2018. "Synchronization dependence on initial setting of chaotic systems without equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 124-132.
    7. Liu, Yuanyuan & Sun, Zhongkui & Yang, Xiaoli & Xu, Wei, 2021. "Dynamical robustness and firing modes in multilayer memristive neural networks of nonidentical neurons," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    8. Xu, Ying & Jia, Ya & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Synchronization between neurons coupled by memristor," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 435-442.
    9. Ushakov, Yury & Balanov, Alexander & Savel’ev, Sergey, 2021. "Role of noise in spiking dynamics of diffusive memristor driven by heating-cooling cycles," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    10. Wang, Zhen & Parastesh, Fatemeh & Rajagopal, Karthikeyan & Hamarash, Ibrahim Ismael & Hussain, Iqtadar, 2020. "Delay-induced synchronization in two coupled chaotic memristive Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    11. Li, Fan, 2020. "Effect of field coupling on the wave propagation in the neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    12. Shi, Shuyu & Liang, Yan & Li, Yiqing & Lu, Zhenzhou & Dong, Yujiao, 2024. "A neuron circuit based on memristor and negative capacitor: Dynamics analysis and hardware implementation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    13. Ushakov, Yury & Akther, Amir & Borisov, Pavel & Pattnaik, Debi & Savel’ev, Sergey & Balanov, Alexander G., 2021. "Deterministic mechanisms of spiking in diffusive memristors," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    14. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Bao, Han & Yu, Xihong & Zhang, Yunzhen & Liu, Xiaofeng & Chen, Mo, 2023. "Initial condition-offset regulating synchronous dynamics and energy diversity in a memristor-coupled network of memristive HR neurons," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    16. Das, Saureesh, 2022. "Recurrence quantification and bifurcation analysis of electrical activity in resistive/memristive synapse coupled Fitzhugh–Nagumo type neurons," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    17. Hou, Zhangliang & Ma, Jun & Zhan, Xuan & Yang, Lijian & Jia, Ya, 2021. "Estimate the electrical activity in a neuron under depolarization field," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Sang Hyun Sung & Tae Jin Kim & Hyera Shin & Tae Hong Im & Keon Jae Lee, 2022. "Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Zhang, Ge & Wang, Chunni & Alzahrani, Faris & Wu, Fuqiang & An, Xinlei, 2018. "Investigation of dynamical behaviors of neurons driven by memristive synapse," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 15-24.
    20. Pietro Belleri & Judith Pons i Tarrés & Iain McCulloch & Paul W. M. Blom & Zsolt M. Kovács-Vajna & Paschalis Gkoupidenis & Fabrizio Torricelli, 2024. "Unravelling the operation of organic artificial neurons for neuromorphic bioelectronics," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:137:y:2020:i:c:s0960077920301843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.