IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35160-1.html
   My bibliography  Save this article

Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics

Author

Listed:
  • Tianyu Wang

    (Fudan University
    Zhangjiang Fudan International Innovation Center)

  • Jialin Meng

    (Fudan University
    Zhangjiang Fudan International Innovation Center)

  • Xufeng Zhou

    (Fudan University)

  • Yue Liu

    (Fudan University)

  • Zhenyu He

    (Fudan University
    Zhangjiang Fudan International Innovation Center)

  • Qi Han

    (Fudan University
    Zhangjiang Fudan International Innovation Center)

  • Qingxuan Li

    (Fudan University
    Zhangjiang Fudan International Innovation Center)

  • Jiajie Yu

    (Fudan University
    Zhangjiang Fudan International Innovation Center)

  • Zhenhai Li

    (Fudan University
    Zhangjiang Fudan International Innovation Center)

  • Yongkai Liu

    (Fudan University
    Zhangjiang Fudan International Innovation Center)

  • Hao Zhu

    (Fudan University
    Zhangjiang Fudan International Innovation Center)

  • Qingqing Sun

    (Fudan University
    Zhangjiang Fudan International Innovation Center)

  • David Wei Zhang

    (Fudan University
    Zhangjiang Fudan International Innovation Center)

  • Peining Chen

    (Fudan University)

  • Huisheng Peng

    (Fudan University)

  • Lin Chen

    (Fudan University
    Zhangjiang Fudan International Innovation Center)

Abstract

Neuromorphic computing memristors are attractive to construct low-power- consumption electronic textiles due to the intrinsic interwoven architecture and promising applications in wearable electronics. Developing reconfigurable fiber-based memristors is an efficient method to realize electronic textiles that capable of neuromorphic computing function. However, the previously reported artificial synapse and neuron need different materials and configurations, making it difficult to realize multiple functions in a single device. Herein, a textile memristor network of Ag/MoS2/HfAlOx/carbon nanotube with reconfigurable characteristics was reported, which can achieve both nonvolatile synaptic plasticity and volatile neuron functions. In addition, a single reconfigurable memristor can realize integrate-and-fire function, exhibiting significant advantages in reducing the complexity of neuron circuits. The firing energy consumption of fiber-based memristive neuron is 1.9 fJ/spike (femtojoule-level), which is at least three orders of magnitude lower than that of the reported biological and artificial neuron (picojoule-level). The ultralow energy consumption makes it possible to create an electronic neural network that reduces the energy consumption compared to human brain. By integrating the reconfigurable synapse, neuron and heating resistor, a smart textile system is successfully constructed for warm fabric application, providing a unique functional reconfiguration pathway toward the next-generation in-memory computing textile system.

Suggested Citation

  • Tianyu Wang & Jialin Meng & Xufeng Zhou & Yue Liu & Zhenyu He & Qi Han & Qingxuan Li & Jiajie Yu & Zhenhai Li & Yongkai Liu & Hao Zhu & Qingqing Sun & David Wei Zhang & Peining Chen & Huisheng Peng & , 2022. "Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35160-1
    DOI: 10.1038/s41467-022-35160-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35160-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35160-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Logan G. Wright & Tatsuhiro Onodera & Martin M. Stein & Tianyu Wang & Darren T. Schachter & Zoey Hu & Peter L. McMahon, 2022. "Deep physical neural networks trained with backpropagation," Nature, Nature, vol. 601(7894), pages 549-555, January.
    2. Wei Yi & Kenneth K. Tsang & Stephen K. Lam & Xiwei Bai & Jack A. Crowell & Elias A. Flores, 2018. "Biological plausibility and stochasticity in scalable VO2 active memristor neurons," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Suhas Kumar & R. Stanley Williams & Ziwen Wang, 2020. "Third-order nanocircuit elements for neuromorphic engineering," Nature, Nature, vol. 585(7826), pages 518-523, September.
    4. Jiqing He & Chenhao Lu & Haibo Jiang & Fei Han & Xiang Shi & Jingxia Wu & Liyuan Wang & Taiqiang Chen & Jiajia Wang & Ye Zhang & Han Yang & Guoqi Zhang & Xuemei Sun & Bingjie Wang & Peining Chen & Yon, 2021. "Scalable production of high-performing woven lithium-ion fibre batteries," Nature, Nature, vol. 597(7874), pages 57-63, September.
    5. Peng Yao & Huaqiang Wu & Bin Gao & Jianshi Tang & Qingtian Zhang & Wenqiang Zhang & J. Joshua Yang & He Qian, 2020. "Fully hardware-implemented memristor convolutional neural network," Nature, Nature, vol. 577(7792), pages 641-646, January.
    6. Shiva Subbulakshmi Radhakrishnan & Amritanand Sebastian & Aaryan Oberoi & Sarbashis Das & Saptarshi Das, 2021. "A biomimetic neural encoder for spiking neural network," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Xiang Shi & Yong Zuo & Peng Zhai & Jiahao Shen & Yangyiwei Yang & Zhen Gao & Meng Liao & Jingxia Wu & Jiawei Wang & Xiaojie Xu & Qi Tong & Bo Zhang & Bingjie Wang & Xuemei Sun & Lihua Zhang & Qibing P, 2021. "Large-area display textiles integrated with functional systems," Nature, Nature, vol. 591(7849), pages 240-245, March.
    8. Tianda Fu & Xiaomeng Liu & Shuai Fu & Trevor Woodard & Hongyan Gao & Derek R. Lovley & Jun Yao, 2021. "Self-sustained green neuromorphic interfaces," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Fanfan Li & Dingwei Li & Chuanqing Wang & Guolei Liu & Rui Wang & Huihui Ren & Yingjie Tang & Yan Wang & Yitong Chen & Kun Liang & Qi Huang & Mohamad Sawan & Min Qiu & Hong Wang & Bowen Zhu, 2024. "An artificial visual neuron with multiplexed rate and time-to-first-spike coding," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Zhou, Wei & Jin, Peipei & Dong, Yujiao & Liang, Yan & Wang, Guangyi, 2023. "Memristor neurons and their coupling networks based on Edge of Chaos Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Dong, Yujiao & Yang, Shuting & Liang, Yan & Wang, Guangyi, 2022. "Neuromorphic dynamics near the edge of chaos in memristive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Kyung Seok Woo & Alan Zhang & Allison Arabelo & Timothy D. Brown & Minseong Park & A. Alec Talin & Elliot J. Fuller & Ravindra Singh Bisht & Xiaofeng Qian & Raymundo Arroyave & Shriram Ramanathan & Lu, 2024. "True random number generation using the spin crossover in LaCoO3," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Xi Zhou & Liang Zhao & Chu Yan & Weili Zhen & Yinyue Lin & Le Li & Guanlin Du & Linfeng Lu & Shan-Ting Zhang & Zhichao Lu & Dongdong Li, 2023. "Thermally stable threshold selector based on CuAg alloy for energy-efficient memory and neuromorphic computing applications," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Haojie Lu & Yong Zhang & Mengjia Zhu & Shuo Li & Huarun Liang & Peng Bi & Shuai Wang & Haomin Wang & Linli Gan & Xun-En Wu & Yingying Zhang, 2024. "Intelligent perceptual textiles based on ionic-conductive and strong silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Ruomin Zhu & Sam Lilak & Alon Loeffler & Joseph Lizier & Adam Stieg & James Gimzewski & Zdenka Kuncic, 2023. "Online dynamical learning and sequence memory with neuromorphic nanowire networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. See-On Park & Hakcheon Jeong & Jongyong Park & Jongmin Bae & Shinhyun Choi, 2022. "Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Ushakov, Yury & Akther, Amir & Borisov, Pavel & Pattnaik, Debi & Savel’ev, Sergey & Balanov, Alexander G., 2021. "Deterministic mechanisms of spiking in diffusive memristors," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    11. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Xu, Quan & Wang, Yiteng & Wu, Huagan & Chen, Mo & Chen, Bei, 2024. "Periodic and chaotic spiking behaviors in a simplified memristive Hodgkin-Huxley circuit," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    13. Ying, Jiajie & Min, Fuhong & Wang, Guangyi, 2023. "Neuromorphic behaviors of VO2 memristor-based neurons," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    14. Sang Hyun Sung & Tae Jin Kim & Hyera Shin & Tae Hong Im & Keon Jae Lee, 2022. "Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Mingrui Jiang & Keyi Shan & Chengping He & Can Li, 2023. "Efficient combinatorial optimization by quantum-inspired parallel annealing in analogue memristor crossbar," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Malte J. Rasch & Charles Mackin & Manuel Gallo & An Chen & Andrea Fasoli & Frédéric Odermatt & Ning Li & S. R. Nandakumar & Pritish Narayanan & Hsinyu Tsai & Geoffrey W. Burr & Abu Sebastian & Vijay N, 2023. "Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Pietro Belleri & Judith Pons i Tarrés & Iain McCulloch & Paul W. M. Blom & Zsolt M. Kovács-Vajna & Paschalis Gkoupidenis & Fabrizio Torricelli, 2024. "Unravelling the operation of organic artificial neurons for neuromorphic bioelectronics," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Min, Fuhong & Zhang, Wen & Ji, Ziyi & Zhang, Lei, 2021. "Switching dynamics of a non-autonomous FitzHugh-Nagumo circuit with piecewise-linear flux-controlled memristor," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Songlin Zhang & Mengjuan Zhou & Mingyang Liu & Zi Hao Guo & Hao Qu & Wenshuai Chen & Swee Ching Tan, 2023. "Ambient-conditions spinning of functional soft fibers via engineering molecular chain networks and phase separation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Yuan-Hang Zhang & Chesson Sipling & Erbin Qiu & Ivan K. Schuller & Massimiliano Di Ventra, 2024. "Collective dynamics and long-range order in thermal neuristor networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35160-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.