IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924009287.html
   My bibliography  Save this article

Firing patterns and fast–slow dynamics in an N-type LAM-based FitzHugh–Nagumo circuit

Author

Listed:
  • Xu, Quan
  • Fang, Yujian
  • Wu, Huagan
  • Bao, Han
  • Wang, Ning

Abstract

The diversity of firing patterns and their bifurcation mechanisms of a neuron circuit are crucial for exploiting bionic applications. This paper constructs an N-type locally active memristor (LAM)-based FitzHugh–Nagumo (FHN) circuit by replacing the tunnel-diode in the original FHN circuit. Numerical simulations and hardware measurements reveal that the N-type LAM-based FHN circuit can reproduce rich neuromorphic firing patterns of quasi-periodic/periodic bursting behaviors and chaotic/periodic spiking behaviors. The bursting and spiking behaviors are triggered by a low-frequency stimulus and a high-frequency one, respectively. Besides, the fold and Hopf bifurcation sets are depicted. Then, the bifurcation mechanisms for the quasi-periodic and periodic bursting behaviors via Hopf/Hopf and Hopf/fold bifurcations are theoretically deduced by time-domain waveform and equilibrium trajectory. The numerical results and hardware experiments exhibit the effectiveness of the proposed memristive FHN circuit in reproducing abundant firing patterns of bursting and spiking behaviors.

Suggested Citation

  • Xu, Quan & Fang, Yujian & Wu, Huagan & Bao, Han & Wang, Ning, 2024. "Firing patterns and fast–slow dynamics in an N-type LAM-based FitzHugh–Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009287
    DOI: 10.1016/j.chaos.2024.115376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924009287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.