IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924009287.html
   My bibliography  Save this article

Firing patterns and fast–slow dynamics in an N-type LAM-based FitzHugh–Nagumo circuit

Author

Listed:
  • Xu, Quan
  • Fang, Yujian
  • Wu, Huagan
  • Bao, Han
  • Wang, Ning

Abstract

The diversity of firing patterns and their bifurcation mechanisms of a neuron circuit are crucial for exploiting bionic applications. This paper constructs an N-type locally active memristor (LAM)-based FitzHugh–Nagumo (FHN) circuit by replacing the tunnel-diode in the original FHN circuit. Numerical simulations and hardware measurements reveal that the N-type LAM-based FHN circuit can reproduce rich neuromorphic firing patterns of quasi-periodic/periodic bursting behaviors and chaotic/periodic spiking behaviors. The bursting and spiking behaviors are triggered by a low-frequency stimulus and a high-frequency one, respectively. Besides, the fold and Hopf bifurcation sets are depicted. Then, the bifurcation mechanisms for the quasi-periodic and periodic bursting behaviors via Hopf/Hopf and Hopf/fold bifurcations are theoretically deduced by time-domain waveform and equilibrium trajectory. The numerical results and hardware experiments exhibit the effectiveness of the proposed memristive FHN circuit in reproducing abundant firing patterns of bursting and spiking behaviors.

Suggested Citation

  • Xu, Quan & Fang, Yujian & Wu, Huagan & Bao, Han & Wang, Ning, 2024. "Firing patterns and fast–slow dynamics in an N-type LAM-based FitzHugh–Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009287
    DOI: 10.1016/j.chaos.2024.115376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924009287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Njitacke, Zeric Tabekoueng & Takembo, Clovis Ntahkie & Awrejcewicz, Jan & Fouda, Henri Paul Ekobena & Kengne, Jacques, 2022. "Hamilton energy, complex dynamical analysis and information patterns of a new memristive FitzHugh-Nagumo neural network," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Xu, Quan & Wang, Kai & Chen, Mo & Parastesh, Fatemeh & Wang, Ning, 2024. "Bursting and spiking activities in a Wilson neuron circuit with memristive sodium and potassium ion channels," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Lai, Qiang & Lai, Cong & Zhang, Hui & Li, Chunbiao, 2022. "Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Njitacke, Z.T. & kengne, J. & Kengne, L. Kamdjeu, 2017. "Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 77-91.
    5. Ge, Mengyan & Lu, Lulu & Xu, Ying & Mamatimin, Rozihajim & Pei, Qiming & Jia, Ya, 2020. "Vibrational mono-/bi-resonance and wave propagation in FitzHugh–Nagumo neural systems under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    6. Ribeiro, Haroldo V. & Lopes, Diego D. & Pessa, Arthur A.B. & Martins, Alvaro F. & da Cunha, Bruno R. & Gonçalves, Sebastián & Lenzi, Ervin K. & Hanley, Quentin S. & Perc, Matjaž, 2023. "Deep learning criminal networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    7. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Suhas Kumar & R. Stanley Williams & Ziwen Wang, 2020. "Third-order nanocircuit elements for neuromorphic engineering," Nature, Nature, vol. 585(7826), pages 518-523, September.
    9. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Zhao, Heqi & Ma, Xindong & Yang, Weijie & Zhang, Zhao & Bi, Qinsheng, 2023. "The mechanism of periodic and chaotic bursting patterns in an externally excited memcapacitive system," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    11. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    12. Zhang, Xu & Min, Fuhong & Dou, Yiping & Xu, Yeyin, 2023. "Bifurcation analysis of a modified FitzHugh-Nagumo neuron with electric field," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Quan & Wang, Kai & Chen, Mo & Parastesh, Fatemeh & Wang, Ning, 2024. "Bursting and spiking activities in a Wilson neuron circuit with memristive sodium and potassium ion channels," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Xu, Quan & Ding, Xincheng & Wang, Ning & Chen, Bei & Parastesh, Fatemeh & Chen, Mo, 2024. "Spiking activity in a memcapacitive and memristive emulator-based bionic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    3. Xu, Quan & Wang, Yiteng & Wu, Huagan & Chen, Mo & Chen, Bei, 2024. "Periodic and chaotic spiking behaviors in a simplified memristive Hodgkin-Huxley circuit," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    4. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Zhang, Jianlin & Bao, Han & Yu, Xihong & Chen, Bei, 2024. "Heterogeneous coexistence of extremely many attractors in adaptive synapse neuron considering memristive EMI," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    6. Zhou, Wei & Jin, Peipei & Dong, Yujiao & Liang, Yan & Wang, Guangyi, 2023. "Memristor neurons and their coupling networks based on Edge of Chaos Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    7. Wu, Huagan & Gu, Jinxiang & Chen, Mo & Wang, Ning & Xu, Quan, 2024. "Bionic firing activities in a dual mem-elements based CNN cell," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    8. Yao, Zhao & Sun, Kehui & Wang, Huihai, 2024. "Collective behaviors of fractional-order FithzHugh–Nagumo network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    9. Bao, Han & Yu, Xihong & Zhang, Yunzhen & Liu, Xiaofeng & Chen, Mo, 2023. "Initial condition-offset regulating synchronous dynamics and energy diversity in a memristor-coupled network of memristive HR neurons," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    10. Ying, Jiajie & Min, Fuhong & Wang, Guangyi, 2023. "Neuromorphic behaviors of VO2 memristor-based neurons," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    11. Lin, Hairong & Wang, Chunhua & Sun, Jingru & Zhang, Xin & Sun, Yichuang & Iu, Herbert H.C., 2023. "Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. Huang, Guodong & Zhou, Shu & Zhu, Rui & Wang, Yunhai & Chai, Yuan, 2024. "Stability and complexity evaluation of attractors in a controllable piezoelectric Fitzhugh-Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    13. Shi, Wei & Min, Fuhong & Yang, Songtao, 2024. "Bifurcation dynamics and FPGA implementation of coupled Fitzhugh-Nagumo neuronal system," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    14. Rajagopal, Karthikeyan & Nezhad Hajian, Dorsa & Natiq, Hayder & Peng, Yuexi & Parastesh, Fatemeh & Jafari, Sajad, 2024. "Effect of Gaussian gradient in the medium's action potential morphology on spiral waves," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    15. Bao, Bocheng & Chen, Liuhui & Bao, Han & Chen, Mo & Xu, Quan, 2024. "Bifurcations to bursting oscillations in memristor-based FitzHugh-Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    16. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    17. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    18. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    20. Junlin Xiong & Jiao Xie & Bin Cheng & Yudi Dai & Xinyu Cui & Lizheng Wang & Zenglin Liu & Ji Zhou & Naizhou Wang & Xianghan Xu & Xianhui Chen & Sang-Wook Cheong & Shi-Jun Liang & Feng Miao, 2024. "Electrical switching of Ising-superconducting nonreciprocity for quantum neuronal transistor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.