IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i13p2033-d1425928.html
   My bibliography  Save this article

Existence and Sensitivity Analysis of a Caputo Fractional-Order Diphtheria Epidemic Model

Author

Listed:
  • Idris Ahmed

    (Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
    Department of Mathematics, Faculty of Natural and Applied Sciences, Sule Lamido University Kafin Hausa, Kafin Hausa P.M.B 048, Jigawa State, Nigeria
    These authors contributed equally to this work.)

  • Chanakarn Kiataramkul

    (Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
    These authors contributed equally to this work.)

  • Mubarak Muhammad

    (Department of Physiology, Neuroscience Program, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
    These authors contributed equally to this work.)

  • Jessada Tariboon

    (Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
    These authors contributed equally to this work.)

Abstract

Diphtheria, a potentially life-threatening infectious disease, is primarily caused by the bacterium Corynebacterium diphtheriae . This pathogen induces a range of severe symptoms, including respiratory distress, cardiac arrhythmias, and, in extreme cases, fatal outcomes. This paper aim to unravel the transmission dynamics of diphtheria infection within the Caputo fractional derivatives framework, establishing the solutions’ existence and uniqueness. Through forward normalized sensitivity analysis, we scrutinize the key parameters influencing the basic reproduction number, a pivotal metric in understanding and controlling the spread of the disease. The results indicate that reducing the values of the interaction rate, transmission rate, and birth rate plays a key role in curtailing diphtheria transmission. Furthermore, employing an effective numerical tool, we present graphical representations that delineate the influence of various crucial model parameters on infection dynamics.

Suggested Citation

  • Idris Ahmed & Chanakarn Kiataramkul & Mubarak Muhammad & Jessada Tariboon, 2024. "Existence and Sensitivity Analysis of a Caputo Fractional-Order Diphtheria Epidemic Model," Mathematics, MDPI, vol. 12(13), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2033-:d:1425928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/13/2033/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/13/2033/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wahab A. Iddrisu & Inusah Iddrisu & Abdul-Karim Iddrisu & Keshlan S. Govinder, 2023. "Modeling Cholera Epidemiology Using Stochastic Differential Equations," Journal of Applied Mathematics, Hindawi, vol. 2023, pages 1-17, May.
    2. Yusuf, Abdullahi & Acay, Bahar & Mustapha, Umar Tasiu & Inc, Mustafa & Baleanu, Dumitru, 2021. "Mathematical modeling of pine wilt disease with Caputo fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. A. Mhlanga & Xiaohua Ding, 2021. "Dynamics of HSV-2 in the Presence of Optimal Counseling and Education among Prisoners," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-18, June.
    4. Sung Kyu Choi & Bowon Kang & Namjip Koo, 2014. "Stability for Caputo Fractional Differential Systems," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-6, January.
    5. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    6. Doungmo Goufo, Emile F. & Khan, Yasir & Chaudhry, Qasim Ali, 2020. "HIV and shifting epicenters for COVID-19, an alert for some countries," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babaei, A. & Ahmadi, M. & Jafari, H. & Liya, A., 2021. "A mathematical model to examine the effect of quarantine on the spread of coronavirus," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Kumar, Pushpendra & Erturk, Vedat Suat & Murillo-Arcila, Marina, 2021. "A complex fractional mathematical modeling for the love story of Layla and Majnun," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2022. "Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear wiener systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    5. Mallika Arjunan, M. & Abdeljawad, Thabet & Kavitha, V. & Yousef, Ali, 2021. "On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    7. Rubayyi T. Alqahtani & Abdullahi Yusuf & Ravi P. Agarwal, 2021. "Mathematical Analysis of Oxygen Uptake Rate in Continuous Process under Caputo Derivative," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    8. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Rastko Jovanović & Miloš Davidović & Ivan Lazović & Maja Jovanović & Milena Jovašević-Stojanović, 2021. "Modelling Voluntary General Population Vaccination Strategies during COVID-19 Outbreak: Influence of Disease Prevalence," IJERPH, MDPI, vol. 18(12), pages 1-18, June.
    10. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Ahmad, Shabir & Ullah, Aman & Arfan, Muhammad & Shah, Kamal, 2020. "On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Kumar, Sachin & Cao, Jinde & Abdel-Aty, Mahmoud, 2020. "A novel mathematical approach of COVID-19 with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Kumar, Sunil & Chauhan, R.P. & Momani, Shaher & Hadid, Samir, 2021. "A study of fractional TB model due to mycobacterium tuberculosis bacteria," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    14. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Mallika Arjunan, M. & Hamiaz, A. & Kavitha, V., 2021. "Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    16. Chatterjee, Amar Nath & Ahmad, Bashir, 2021. "A fractional-order differential equation model of COVID-19 infection of epithelial cells," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    17. Farman, Muhammad & Sarwar, Rabia & Akgul, Ali, 2023. "Modeling and analysis of sustainable approach for dynamics of infections in plant virus with fractal fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    18. Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Kiani, Adiqa Kausar & Raja, Muhammad Asif Zahoor & Chaudhary, Iqra Ishtiaq & Pinto, Carla M.A., 2022. "Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    19. Asamoah, Joshua Kiddy K. & Fatmawati,, 2023. "A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    20. Majumdar, Prahlad & Mondal, Bapin & Debnath, Surajit & Ghosh, Uttam, 2022. "Controlling of periodicity and chaos in a three dimensional prey predator model introducing the memory effect," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2033-:d:1425928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.