IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1578-d810338.html
   My bibliography  Save this article

Dynamical Analysis of Nutrient-Phytoplankton-Zooplankton Model with Viral Disease in Phytoplankton Species under Atangana-Baleanu-Caputo Derivative

Author

Listed:
  • Songkran Pleumpreedaporn

    (Department of Mathematics, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chanthaburi 22000, Thailand
    These authors contributed equally to this work.)

  • Chanidaporn Pleumpreedaporn

    (Department of Mathematics, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chanthaburi 22000, Thailand
    These authors contributed equally to this work.)

  • Jutarat Kongson

    (Research Group of Theoretical and Computation in Applied Science, Department of Mathematics, Faculty of Science, Burapha University, Chonburi 20131, Thailand
    Center of Excellence in Mathematics, CHE, Sri Ayutthaya Road, Bangkok 10400, Thailand
    These authors contributed equally to this work.)

  • Chatthai Thaiprayoon

    (Research Group of Theoretical and Computation in Applied Science, Department of Mathematics, Faculty of Science, Burapha University, Chonburi 20131, Thailand
    Center of Excellence in Mathematics, CHE, Sri Ayutthaya Road, Bangkok 10400, Thailand
    These authors contributed equally to this work.)

  • Jehad Alzabut

    (Deparment of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
    Department of Industrial Engineering, OSTİM Technical University, Ankara 06374, Turkey
    These authors contributed equally to this work.)

  • Weerawat Sudsutad

    (Department of Statistics, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
    These authors contributed equally to this work.)

Abstract

A mathematical model of the nutrient-phytoplankton-zooplankton associated with viral infection in phytoplankton under the Atangana-Baleanu derivative in Caputo sense is investigated in this study. We prove the theoretical results for the existence and uniqueness of the solutions by using Banach’s and Sadovskii’s fixed point theorems. The notion of various Ulam’s stability is used to guarantee the context of the stability analysis. Furthermore, the equilibrium points and the basic reproduction numbers for the proposed model are provided. The Adams type predictor-corrector algorithm has been applied for the theoretical confirmation to establish the approximate solutions. A variety of numerical plots corresponding to various fractional orders between zero and one are presented to describe the dynamical behavior of the fractional model under consideration.

Suggested Citation

  • Songkran Pleumpreedaporn & Chanidaporn Pleumpreedaporn & Jutarat Kongson & Chatthai Thaiprayoon & Jehad Alzabut & Weerawat Sudsutad, 2022. "Dynamical Analysis of Nutrient-Phytoplankton-Zooplankton Model with Viral Disease in Phytoplankton Species under Atangana-Baleanu-Caputo Derivative," Mathematics, MDPI, vol. 10(9), pages 1-33, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1578-:d:810338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    2. Ghanbari, Behzad & Gómez-Aguilar, J.F., 2018. "Modeling the dynamics of nutrient–phytoplankton–zooplankton system with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 114-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asamoah, Joshua Kiddy K. & Fatmawati,, 2023. "A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Marisa Kaewsuwan & Rachanee Phuwapathanapun & Weerawat Sudsutad & Jehad Alzabut & Chatthai Thaiprayoon & Jutarat Kongson, 2022. "Nonlocal Impulsive Fractional Integral Boundary Value Problem for ( ρ k , ϕ k )-Hilfer Fractional Integro-Differential Equations," Mathematics, MDPI, vol. 10(20), pages 1-40, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Mahmood, Tariq & ur Rahman, Mati & Arfan, Muhammad & Kayani, Sadaf-Ilyas & Sun, Mei, 2023. "Mathematical study of Algae as a bio-fertilizer using fractal–fractional dynamic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 207-222.
    3. Zhang, Tianxian & Zhao, Yongqi & Xu, Xiangliang & Wu, Si & Gu, Yujuan, 2024. "Solution and dynamics analysis of fractal-fractional multi-scroll Chen chaotic system based on Adomain decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    4. Farman, Muhammad & Ahmad, Aqeel & Zehra, Anum & Nisar, Kottakkaran Sooppy & Hincal, Evren & Akgul, Ali, 2024. "Analysis and controllability of diabetes model for experimental data by using fractional operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 133-148.
    5. Khader, M.M. & Inc, Mustafa, 2021. "Numerical technique based on the interpolation with Lagrange polynomials to analyze the fractional variable-order mathematical model of the hepatitis C with different types of virus genome," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Jiong Weng & Xiaojing Liu & Youhe Zhou & Jizeng Wang, 2022. "An Explicit Wavelet Method for Solution of Nonlinear Fractional Wave Equations," Mathematics, MDPI, vol. 10(21), pages 1-14, October.
    7. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.
    9. Sabermahani, Sedigheh & Ordokhani, Yadollah & Rahimkhani, Parisa, 2023. "Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    10. Qureshi, Sania & Atangana, Abdon, 2020. "Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    11. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    12. Ali, Zeeshan & Rabiei, Faranak & Hosseini, Kamyar, 2023. "A fractal–fractional-order modified Predator–Prey mathematical model with immigrations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 466-481.
    13. Shloof, A.M. & Senu, N. & Ahmadian, A. & Salahshour, Soheil, 2021. "An efficient operation matrix method for solving fractal–fractional differential equations with generalized Caputo-type fractional–fractal derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 415-435.
    14. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Dutta, Maitreyee & Roy, Binoy Krishna, 2020. "A new fractional-order system displaying coexisting multiwing attractors; its synchronisation and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    16. Hashem Najafi & Sina Etemad & Nichaphat Patanarapeelert & Joshua Kiddy K. Asamoah & Shahram Rezapour & Thanin Sitthiwirattham, 2022. "A Study on Dynamics of CD4 + T-Cells under the Effect of HIV-1 Infection Based on a Mathematical Fractal-Fractional Model via the Adams-Bashforth Scheme and Newton Polynomials," Mathematics, MDPI, vol. 10(9), pages 1-32, April.
    17. Omaba, McSylvester Ejighikeme, 2021. "Growth moment, stability and asymptotic behaviours of solution to a class of time-fractal-fractional stochastic differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    18. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    19. Goufo, Emile F. Doungmo, 2021. "On the fractal dynamics for higher order traveling waves," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    20. Avcı, İbrahim & Lort, Hüseyin & Tatlıcıoğlu, Buğce E., 2023. "Numerical investigation and deep learning approach for fractal–fractional order dynamics of Hopfield neural network model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1578-:d:810338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.