IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip1s0960077922009444.html
   My bibliography  Save this article

Most probable trajectory of a tumor model with immune response subjected to asymmetric Lévy noise

Author

Listed:
  • Hao, Mengli
  • Jia, Wantao
  • Wang, Liang
  • Li, Fuxiao

Abstract

This paper is devoted to making realistic prediction for the trajectory transition of tumor cells induced by stochastic disturbances. To maintain better consistency with reality, an asymmetric Lévy noise is incorporated in a tumor–immune model. The corresponding Fokker–Planck equation is derived by the adjoint operator method. The transition behaviors of tumor cells are measured by maximizing the probability density function of system trajectories, namely, the most probable trajectory. The numerical algorithm for obtaining the most probable trajectory is offered. Based on the numerical calculations, the effect of Lévy noise on the evolution trajectories of tumor cells is discussed to explore the optimal parameters controlling or even eradicating tumor. It is found that by adjusting noise parameters, Lévy noise can induce the transition of tumor from the high concentration stable state toward the low concentration stable state or even to the tumor extinction state. When the skewness parameter is negative, Lévy noise with the stability index less than 1.0 and larger noise intensity is in favor of inhibiting tumor proliferation. While when the skewness parameter is positive, Lévy noise with the stability index larger than 1.0 and smaller noise intensity promotes the decrease of tumor cells.

Suggested Citation

  • Hao, Mengli & Jia, Wantao & Wang, Liang & Li, Fuxiao, 2022. "Most probable trajectory of a tumor model with immune response subjected to asymmetric Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009444
    DOI: 10.1016/j.chaos.2022.112765
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922009444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Yong & Feng, Jing & Li, JuanJuan & Zhang, Huiqing, 2013. "Stochastic bifurcation for a tumor–immune system with symmetric Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4739-4748.
    2. Han, Ping & Xu, Wei & Zhang, Hongxia & Wang, Liang, 2022. "Most probable trajectories in the delayed tumor growth model excited by a multiplicative non-Gaussian noise," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Guo, Yongfeng & Wang, Linjie & Wei, Fang & Tan, Jianguo, 2019. "Dynamical behavior of simplified FitzHugh-Nagumo neural system driven by Lévy noise and Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 118-126.
    4. Nicolas E. Humphries & Nuno Queiroz & Jennifer R. M. Dyer & Nicolas G. Pade & Michael K. Musyl & Kurt M. Schaefer & Daniel W. Fuller & Juerg M. Brunnschweiler & Thomas K. Doyle & Jonathan D. R. Hought, 2010. "Environmental context explains Lévy and Brownian movement patterns of marine predators," Nature, Nature, vol. 465(7301), pages 1066-1069, June.
    5. Chen, Xiaoli & Wu, Fengyan & Duan, Jinqiao & Kurths, Jürgen & Li, Xiaofan, 2019. "Most probable dynamics of a genetic regulatory network under stable Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 425-436.
    6. Duan, Wei-Long & Fang, Hui & Zeng, Chunhua, 2019. "The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 96-102.
    7. Gao, Ting & Duan, Jinqiao & Li, Xiaofan, 2016. "Fokker–Planck equations for stochastic dynamical systems with symmetric Lévy motions," Applied Mathematics and Computation, Elsevier, vol. 278(C), pages 1-20.
    8. Han, Ping & Xu, Wei & Wang, Liang & Zhang, Hongxia & Ma, Shichao, 2020. "Most probable dynamics of the tumor growth model with immune surveillance under cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    9. Bashkirtseva, I. & Ryashko, L., 2020. "Analysis of noise-induced phenomena in the nonlinear tumor–immune system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    10. Cheng, Xiujun & Wang, Hui & Wang, Xiao & Duan, Jinqiao & Li, Xiaofan, 2019. "Most probable transition pathways and maximal likely trajectories in a genetic regulatory system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    11. Guo, Qin & Sun, Zhongkui & Xu, Wei, 2016. "The properties of the anti-tumor model with coupling non-Gaussian noise and Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 43-52.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua, Mengjiao & Wu, Yu, 2022. "Transition and basin stability in a stochastic tumor growth model with immunization," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Han, Ping & Xu, Wei & Zhang, Hongxia & Wang, Liang, 2022. "Most probable trajectories in the delayed tumor growth model excited by a multiplicative non-Gaussian noise," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Yang, Anji & Wang, Hao & Yuan, Sanling, 2023. "Tipping time in a stochastic Leslie predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    4. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    5. Duan, Wei-Long, 2020. "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    6. Han, Ping & Xu, Wei & Wang, Liang & Zhang, Hongxia & Ma, Shichao, 2020. "Most probable dynamics of the tumor growth model with immune surveillance under cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    7. Liu, Xiangdong & Li, Qingze & Pan, Jianxin, 2018. "A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 162-176.
    8. Bi, Zhimin & Liu, Shutang & Ouyang, Miao, 2022. "Spatial dynamics of a fractional predator-prey system with time delay and Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Han, Ping & Xu, Wei & Wang, Liang & Ma, Shichao, 2020. "The most probable response of some prototypical stochastic nonlinear dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    10. Bashkirtseva, Irina, 2018. "Stochastic sensitivity of systems driven by colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 729-736.
    11. Fahimi, Milad & Nouri, Kazem & Torkzadeh, Leila, 2020. "Chaos in a stochastic cancer model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    12. Das, Parthasakha & Das, Pritha & Mukherjee, Sayan, 2020. "Stochastic dynamics of Michaelis–Menten kinetics based tumor-immune interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    13. Li, Wei & Zhang, Ying & Huang, Dongmei & Rajic, Vesna, 2022. "Study on stationary probability density of a stochastic tumor-immune model with simulation by ANN algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    14. Nauta, Johannes & Simoens, Pieter & Khaluf, Yara, 2022. "Group size and resource fractality drive multimodal search strategies: A quantitative analysis on group foraging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    15. Yang, Yi & Huang, Jin, 2024. "Double fast algorithm for solving time-space fractional diffusion problems with spectral fractional Laplacian," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    16. Tesfay, Daniel & Wei, Pingyuan & Zheng, Yayun & Duan, Jinqiao & Kurths, Jürgen, 2020. "Transitions between metastable states in a simplified model for the thermohaline circulation under random fluctuations," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    17. Cao, Boqiang & Shan, Meijing & Zhang, Qimin & Wang, Weiming, 2017. "A stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 127-143.
    18. Cui, Yingxue & Ning, Lijuan, 2023. "Transport of coupled particles in fractional feedback ratchet driven by Bounded noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    19. Wei, Wenqi & Ouyang, Haibin & Li, Steven & Zhao, Xuanbo & Zou, Dexuan, 2022. "A modified fireworks algorithm with dynamic search interval based on closed-loop control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 329-360.
    20. Zhang, Gang & Shu, Yichen & Zhang, Tianqi, 2022. "The study on dynamical behavior of FitzHugh–Nagumo neural model under the co-excitation of non-Gaussian and colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.