IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics0960077922000121.html
   My bibliography  Save this article

Most probable trajectories in the delayed tumor growth model excited by a multiplicative non-Gaussian noise

Author

Listed:
  • Han, Ping
  • Xu, Wei
  • Zhang, Hongxia
  • Wang, Liang

Abstract

This paper investigates the transition phenomenon in the delayed tumor growth model under a multiplicative non-Gaussian colored noise based on the most probable trajectories. Firstly, the unified colored noise approximation and the small delay approximation are utilized to approximate the model in this paper. We then detect the effects of the time-delay, the correlation time and the noise intensity of non-Gaussian colored noise, and find that they can all promote the switch of most probable trajectories from the tumor state to the tumor-free state, namely, the most probable transition time decreases gradually. Conversely, these parameters suppress the transition of most probable trajectories from the tumor-free state to the tumor state, that is, the most probable transition time will increase successively. By analyzing the dynamics under these parameters, it is found that the noise intensity has the greatest influence on the transition behavior. Finally, it can be observed that the sum of the most probable transition time from the tumor-free state to the tumor state and from the tumor state to the tumor-free state is equal to the total observation time.

Suggested Citation

  • Han, Ping & Xu, Wei & Zhang, Hongxia & Wang, Liang, 2022. "Most probable trajectories in the delayed tumor growth model excited by a multiplicative non-Gaussian noise," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000121
    DOI: 10.1016/j.chaos.2022.111801
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922000121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Kang Kang & Wang, Ya Jun & Li, Sheng Hong & Wu, Jian Cheng, 2016. "Stochastic stability and state shifts for a time-delayed cancer growth system subjected to correlated multiplicative and additive noises," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 1-13.
    2. Guo, Wei & Du, Lu-Chun & Mei, Dong-Cheng, 2012. "Transitions induced by time delays and cross-correlated sine-Wiener noises in a tumor–immune system interplay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1270-1280.
    3. Fuentes, M.A. & Wio, Horacio S. & Toral, Raúl, 2002. "Effective Markovian approximation for non-Gaussian noises: a path integral approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 303(1), pages 91-104.
    4. Zhang, Huiqing & Xu, Wei & Xu, Yong, 2009. "The study on a stochastic system with non-Gaussian noise and Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 781-788.
    5. Chen, Xiaoli & Wu, Fengyan & Duan, Jinqiao & Kurths, Jürgen & Li, Xiaofan, 2019. "Most probable dynamics of a genetic regulatory network under stable Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 425-436.
    6. Tesfay, Daniel & Wei, Pingyuan & Zheng, Yayun & Duan, Jinqiao & Kurths, Jürgen, 2020. "Transitions between metastable states in a simplified model for the thermohaline circulation under random fluctuations," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    7. Guo, Wei & Mei, Dong-Cheng, 2014. "Stochastic resonance in a tumor–immune system subject to bounded noises and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 90-98.
    8. Guo, Qin & Sun, Zhongkui & Xu, Wei, 2016. "The properties of the anti-tumor model with coupling non-Gaussian noise and Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 43-52.
    9. Fuentes, M.A. & Toral, Raúl & Wio, Horacio S., 2001. "Enhancement of stochastic resonance: the role of non Gaussian noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(1), pages 114-122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Mengli & Jia, Wantao & Wang, Liang & Li, Fuxiao, 2022. "Most probable trajectory of a tumor model with immune response subjected to asymmetric Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Qin & Sun, Zhongkui & Xu, Wei, 2016. "The properties of the anti-tumor model with coupling non-Gaussian noise and Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 43-52.
    2. Hua, Mengjiao & Wu, Yu, 2022. "Transition and basin stability in a stochastic tumor growth model with immunization," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Zhu, Ping, 2021. "An equivalent analytical method to deal with cross-correlated exponential type noises in the nonlinear dynamic system," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Song, Yi & Xu, Wei & Wei, Wei & Niu, Lizhi, 2023. "Dynamical transition of phenotypic states in breast cancer system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    5. Zhang, Ruiting & Hou, Zhonghuai & Xin, Houwen, 2011. "Effects of non-Gaussian noise near supercritical Hopf bifurcation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 147-153.
    6. Hao, Mengli & Jia, Wantao & Wang, Liang & Li, Fuxiao, 2022. "Most probable trajectory of a tumor model with immune response subjected to asymmetric Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Wu, Jian-Li & Duan, Wei-Long & Luo, Yuhui & Yang, Fengzao, 2020. "Time delay and non-Gaussian noise-enhanced stability of foraging colony system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    8. Wu, Jiancheng & Li, Xuan & Liu, Xianbin, 2016. "The moment Lyapunov exponent of a co-dimension two bifurcation system driven by non-Gaussian colored noise," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 189-200.
    9. Zhang, Huiqing & Xu, Wei & Xu, Yong, 2009. "The study on a stochastic system with non-Gaussian noise and Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 781-788.
    10. Dong, Xiaohui & Wang, Ming & Zhong, Guang-Yan & Yang, Fengzao & Duan, Weilong & Li, Jiang-Cheng & Xiong, Kezhao & Zeng, Chunhua, 2018. "Stochastic delayed kinetics of foraging colony system under non-Gaussian noise," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 1-13.
    11. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Han, Ping & Xu, Wei & Wang, Liang & Ma, Shichao, 2020. "The most probable response of some prototypical stochastic nonlinear dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    13. Bashkirtseva, Irina, 2018. "Stochastic sensitivity of systems driven by colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 729-736.
    14. Ai, Hao & Yang, GuiJiang & Liu, Wei & Wang, Qiubao, 2023. "A fast search method for optimal parameters of stochastic resonance based on stochastic bifurcation and its application in fault diagnosis of rolling bearings," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    15. Yang, Anji & Wang, Hao & Yuan, Sanling, 2023. "Tipping time in a stochastic Leslie predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    16. Liu, Chenggong & Shang, Pengjian & Feng, Guochen, 2017. "The high order dispersion analysis based on first-passage-time probability in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 1-9.
    17. Han, Ping & Xu, Wei & Wang, Liang & Zhang, Hongxia & Ma, Shichao, 2020. "Most probable dynamics of the tumor growth model with immune surveillance under cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    18. Zhang, Gang & Shu, Yichen & Zhang, Tianqi, 2022. "The study on dynamical behavior of FitzHugh–Nagumo neural model under the co-excitation of non-Gaussian and colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    19. Duan, Wei-Long & Fang, Hui, 2020. "The unified colored noise approximation of multidimensional stochastic dynamic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    20. Cheng, Guanghui & Gui, Rong & Yao, Yuangen & Yi, Ming, 2019. "Enhancement of temporal regularity and degradation of spatial synchronization induced by cross-correlated sine-Wiener noises in regular and small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 361-369.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.