IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v148y2021ics0960077921003738.html
   My bibliography  Save this article

Noise and delay enhanced stability in tumor-immune responses to chemotherapy system

Author

Listed:
  • Duan, Wei-Long
  • Lin, Ling

Abstract

The stability of tumor-immune responses to chemotherapy system with Gaussian colored noises and time delay is discussed by means of the maximum Lyapunov exponent. The unified colored noise approximation of multidimensional stochastic dynamic system with Gaussian colored and white noises is extended to the general case for the Gaussian colored noises having different self-correlation times and the correlated noises. We derive the analytic formula of the maximum Lyapunov exponent of system as a function of intensities and correlation times of Gaussian colored noises as well as delay, these parameters could change the stability of system between asymptotically stable and unstable, among, the system appears the noise and delay enhanced stability, which is detected by the maximum Lyapunov exponent.

Suggested Citation

  • Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921003738
    DOI: 10.1016/j.chaos.2021.111019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921003738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spagnolo, B. & Valenti, D. & Guarcello, C. & Carollo, A. & Persano Adorno, D. & Spezia, S. & Pizzolato, N. & Di Paola, B., 2015. "Noise-induced effects in nonlinear relaxation of condensed matter systems," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 412-424.
    2. Xu, Yong & Feng, Jing & Li, JuanJuan & Zhang, Huiqing, 2013. "Stochastic bifurcation for a tumor–immune system with symmetric Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4739-4748.
    3. Wu, Jian-Li & Duan, Wei-Long & Luo, Yuhui & Yang, Fengzao, 2020. "Time delay and non-Gaussian noise-enhanced stability of foraging colony system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    4. B. Spagnolo & A. Dubkov & N. Agudov, 2004. "Enhancement of stability in randomly switching potential with metastable state," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 40(3), pages 273-281, August.
    5. Liu, Xiangdong & Li, Qingze & Pan, Jianxin, 2018. "A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 162-176.
    6. Duan, Wei-Long & Fang, Hui, 2020. "The unified colored noise approximation of multidimensional stochastic dynamic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    7. M. Saleem & Tanuja Agrawal, 2012. "Chaos in a Tumor Growth Model with Delayed Responses of the Immune System," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-16, April.
    8. Fiasconaro, A & Valenti, D & Spagnolo, B, 2003. "Role of the initial conditions on the enhancement of the escape time in static and fluctuating potentials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(1), pages 136-143.
    9. Dong, Yueping & Huang, Gang & Miyazaki, Rinko & Takeuchi, Yasuhiro, 2015. "Dynamics in a tumor immune system with time delays," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 99-113.
    10. Duan, Wei-Long & Fang, Hui & Zeng, Chunhua, 2019. "The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 96-102.
    11. Pang, Liuyong & Zhao, Zhong & Song, Xinyu, 2016. "Cost-effectiveness analysis of optimal strategy for tumor treatment," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 293-301.
    12. Khajanchi, Subhas, 2015. "Bifurcation analysis of a delayed mathematical model for tumor growth," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 264-276.
    13. Uzuntarla, Muhammet & Uzun, Rukiye & Yilmaz, Ergin & Ozer, Mahmut & Perc, Matjaž, 2013. "Noise-delayed decay in the response of a scale-free neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 202-208.
    14. Duan, Wei-Long, 2020. "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    15. Gurcan, Fuat & Kartal, Senol & Ozturk, Ilhan & Bozkurt, Fatma, 2014. "Stability and bifurcation analysis of a mathematical model for tumor–immune interaction with piecewise constant arguments of delay," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 169-179.
    16. Duan, Wei-Long & Fang, Hui & Zeng, Chunhua, 2019. "Second-order algorithm for simulating stochastic differential equations with white noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 491-497.
    17. A. Dubkov & B. Spagnolo, 2008. "Verhulst model with Lévy white noise excitation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(3), pages 361-367, October.
    18. Bernardo Spagnolo & Davide Valenti, 2008. "Volatility Effects on the Escape Time in Financial Market Models," Papers 0810.1625, arXiv.org.
    19. Bai, Chunyan, 2018. "Time delay effects of stochastic resonance induced by multiplicative periodic signal in the gene transcriptional regulatory model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 304-311.
    20. A. Fiasconaro & A. Ochab-Marcinek & B. Spagnolo & E. Gudowska-Nowak, 2008. "Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(3), pages 435-442, October.
    21. Rihan, F.A. & Abdel Rahman, D.H. & Lakshmanan, S. & Alkhajeh, A.S., 2014. "A time delay model of tumour–immune system interactions: Global dynamics, parameter estimation, sensitivity analysis," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 606-623.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Yuanlin & Yu, Xingwang, 2023. "Impact of correlated Gaussian colored noises on stability and stationary probability density for the randomly forced two-species competitive Gompertz model," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Li, Wei & Zhang, Ying & Huang, Dongmei & Rajic, Vesna, 2022. "Study on stationary probability density of a stochastic tumor-immune model with simulation by ANN algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Wei-Long, 2020. "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Liu, Xiangdong & Li, Qingze & Pan, Jianxin, 2018. "A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 162-176.
    3. Agudov, N.V. & Dubkov, A.A. & Safonov, A.V. & Krichigin, A.V. & Kharcheva, A.A. & Guseinov, D.V. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Antonov, I.N. & Carollo, A. & Spagnolo, B., 2021. "Stochastic model of memristor based on the length of conductive region," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Dzyubak, Larysa & Dzyubak, Oleksandr & Awrejcewicz, Jan, 2023. "Nonlinear multiscale diffusion cancer invasion model with memory of states," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Duan, Wei-Long & Fang, Hui & Zeng, Chunhua, 2019. "The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 96-102.
    6. Song, Yi & Xu, Wei, 2021. "Asymmetric Lévy noise changed stability in a gene transcriptional regulatory system," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    7. Yablokov, A.A. & Glushkov, E.I. & Pankratov, A.L. & Gordeeva, A.V. & Kuzmin, L.S. & Il’ichev, E.V., 2021. "Resonant response drives sensitivity of Josephson escape detector," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    8. Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    9. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    10. Chun Zhang & Tao Yang & Shi-Xian Qu, 2021. "Impact of time delays and environmental noise on the extinction of a population dynamics model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-16, November.
    11. dos Santos, Maike A.F. & Junior, Luiz Menon, 2021. "Random diffusivity models for scaled Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    12. Du, Chuanhong & Liu, Licai & Zhang, Zhengping & Yu, Shixing, 2021. "Double memristors oscillator with hidden stacked attractors and its multi-transient and multistability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    13. Park, Jinwoo & Kim, Tae-Hyeon & Kim, Sungjoon & Lee, Geun Ho & Nili, Hussein & Kim, Hyungjin, 2021. "Conduction mechanism effect on physical unclonable function using Al2O3/TiOX memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Spagnolo, B. & Valenti, D. & Guarcello, C. & Carollo, A. & Persano Adorno, D. & Spezia, S. & Pizzolato, N. & Di Paola, B., 2015. "Noise-induced effects in nonlinear relaxation of condensed matter systems," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 412-424.
    15. Han, Ping & Wang, Liang & Xu, Wei & Zhang, Hongxia & Ren, Zhicong, 2021. "The stochastic P-bifurcation analysis of the impact system via the most probable response," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    16. Dehingia, Kaushik & Das, Parthasakha & Upadhyay, Ranjit Kumar & Misra, Arvind Kumar & Rihan, Fathalla A. & Hosseini, Kamyar, 2023. "Modelling and analysis of delayed tumour–immune system with hunting T-cells," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 669-684.
    17. Yakimov, Arkady V. & Filatov, Dmitry O. & Gorshkov, Oleg N. & Klyuev, Alexey V. & Shtraub, Nikolay I. & Kochergin, Viktor S. & Spagnolo, Bernardo, 2021. "Influence of oxygen ion elementary diffusion jumps on the electron current through the conductive filament in yttria stabilized zirconia nanometer-sized memristor," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    18. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    19. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    20. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921003738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.