IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v475y2024ics0096300324001875.html
   My bibliography  Save this article

Double fast algorithm for solving time-space fractional diffusion problems with spectral fractional Laplacian

Author

Listed:
  • Yang, Yi
  • Huang, Jin

Abstract

This paper presents an efficient and concise double fast algorithm to solve high dimensional time-space fractional diffusion problems with spectral fractional Laplacian. We first establish semi-discrete scheme of time-space fractional diffusion equation, which uses linear finite element or fourth-order compact difference method combining with matrix transfer technique to approximate spectral fractional Laplacian. Then we introduce a fast time-stepping L1 scheme for time discretization. The proposed scheme can exactly evaluate fractional power of matrix and perform matrix-vector multiplication at per time level by using discrete sine transform, which doesn't need to resort to any iteration method and can significantly reduce computation cost and memory requirement. Further, we address stability and convergence analyses of full discrete scheme based on fast time-stepping L1 scheme on graded time mesh. Our error analysis shows that the choice of graded mesh factor ω=(2−α)/α shall give an optimal temporal convergence O(N−(2−α)) with N denoting the number of time mesh. Finally, ample numerical examples are delivered to illustrate our theoretical analysis and the efficiency of the suggested scheme.

Suggested Citation

  • Yang, Yi & Huang, Jin, 2024. "Double fast algorithm for solving time-space fractional diffusion problems with spectral fractional Laplacian," Applied Mathematics and Computation, Elsevier, vol. 475(C).
  • Handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324001875
    DOI: 10.1016/j.amc.2024.128715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324001875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew M. Edwards & Richard A. Phillips & Nicholas W. Watkins & Mervyn P. Freeman & Eugene J. Murphy & Vsevolod Afanasyev & Sergey V. Buldyrev & M. G. E. da Luz & E. P. Raposo & H. Eugene Stanley & Ga, 2007. "Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer," Nature, Nature, vol. 449(7165), pages 1044-1048, October.
    2. James W. Kirchner & Xiahong Feng & Colin Neal, 2000. "Fractal stream chemistry and its implications for contaminant transport in catchments," Nature, Nature, vol. 403(6769), pages 524-527, February.
    3. Nicolas E. Humphries & Nuno Queiroz & Jennifer R. M. Dyer & Nicolas G. Pade & Michael K. Musyl & Kurt M. Schaefer & Daniel W. Fuller & Juerg M. Brunnschweiler & Thomas K. Doyle & Jonathan D. R. Hought, 2010. "Environmental context explains Lévy and Brownian movement patterns of marine predators," Nature, Nature, vol. 465(7301), pages 1066-1069, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toman, Kellan & Voulgarakis, Nikolaos K., 2022. "Stochastic pursuit-evasion curves for foraging dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    2. Shinohara, Shuji & Okamoto, Hiroshi & Manome, Nobuhito & Gunji, Pegio-Yukio & Nakajima, Yoshihiro & Moriyama, Toru & Chung, Ung-il, 2022. "Simulation of foraging behavior using a decision-making agent with Bayesian and inverse Bayesian inference: Temporal correlations and power laws in displacement patterns," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Asma Alharbi & Rafik Guefaifia & Salah Boulaaras, 2020. "A New Proof of the Existence of Nonzero Weak Solutions of Impulsive Fractional Boundary Value Problems," Mathematics, MDPI, vol. 8(5), pages 1-16, May.
    4. Bi, Zhimin & Liu, Shutang & Ouyang, Miao, 2022. "Spatial dynamics of a fractional predator-prey system with time delay and Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Butts, David J. & Thompson, Noelle E. & Christensen, Sonja A. & Williams, David M. & Murillo, Michael S., 2022. "Data-driven agent-based model building for animal movement through Exploratory Data Analysis," Ecological Modelling, Elsevier, vol. 470(C).
    6. Zhang, Jingyuan, 2018. "A stable explicitly solvable numerical method for the Riesz fractional advection–dispersion equations," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 209-227.
    7. Qu Simin & Wang Tao & Bao Weimin & Shi Peng & Jiang Peng & Zhou Minmin & Yu Zhongbo, 2013. "Evaluating Infiltration Mechanisms Using Breakthrough Curve and Mean Residence Time," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4579-4590, October.
    8. Hao, Mengli & Jia, Wantao & Wang, Liang & Li, Fuxiao, 2022. "Most probable trajectory of a tumor model with immune response subjected to asymmetric Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    9. Cao, Jiajia & Zhou, Yanbin & Wei, Kun, 2024. "Modeling ants’ walks in patrolling multiple resources using stochastic approximation partial momentum refreshment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    10. Danish A. Ahmed & Sergei V. Petrovskii & Paulo F. C. Tilles, 2018. "The “Lévy or Diffusion” Controversy: How Important Is the Movement Pattern in the Context of Trapping?," Mathematics, MDPI, vol. 6(5), pages 1-27, May.
    11. Nauta, Johannes & Simoens, Pieter & Khaluf, Yara, 2022. "Group size and resource fractality drive multimodal search strategies: A quantitative analysis on group foraging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    12. Reaney, Sim M. & Lane, Stuart N. & Heathwaite, A. Louise & Dugdale, Lucy J., 2011. "Risk-based modelling of diffuse land use impacts from rural landscapes upon salmonid fry abundance," Ecological Modelling, Elsevier, vol. 222(4), pages 1016-1029.
    13. Song, Yi & Xu, Wei & Wei, Wei & Niu, Lizhi, 2023. "Dynamical transition of phenotypic states in breast cancer system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    14. Abdelkawy, M.A. & Alyami, S.A., 2021. "Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    15. Xie, Yingying & Yin, Daopeng & Mei, Liquan, 2022. "Finite difference scheme on graded meshes to the time-fractional neutron diffusion equation with non-smooth solutions," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    16. Treena Basu, 2015. "A Fast O ( N log N ) Finite Difference Method for the One-Dimensional Space-Fractional Diffusion Equation," Mathematics, MDPI, vol. 3(4), pages 1-13, October.
    17. Bi, Zhimin & Liu, Shutang & Ouyang, Miao, 2022. "Three-dimensional pattern dynamics of a fractional predator-prey model with cross-diffusion and herd behavior," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    18. Taohua Liu & Xiucao Yin & Yinghao Chen & Muzhou Hou, 2023. "A Second-Order Accurate Numerical Approximation for a Two-Sided Space-Fractional Diffusion Equation," Mathematics, MDPI, vol. 11(8), pages 1-15, April.
    19. Mi, Li-Na & Guo, Yong-Feng & Zhang, Meng & Zhuo, Xiao-Jing, 2023. "Stochastic resonance in gene transcriptional regulatory system driven by Gaussian noise and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    20. Wei, Wenqi & Ouyang, Haibin & Li, Steven & Zhao, Xuanbo & Zou, Dexuan, 2022. "A modified fireworks algorithm with dynamic search interval based on closed-loop control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 329-360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324001875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.