IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v162y2022ics0960077922006440.html
   My bibliography  Save this article

Spatial dynamics of a fractional predator-prey system with time delay and Allee effect

Author

Listed:
  • Bi, Zhimin
  • Liu, Shutang
  • Ouyang, Miao

Abstract

In this paper, we investigate the spatial dynamics of a class of spatial fractional predator-prey systems with time delay and Allee effect. Firstly, Hopf bifurcation and Turing bifurcation conditions are obtained by using stability theory and bifurcation theory. Then, the abundant dynamic behaviors of the system are demonstrated by numerical simulation. Finally, numerical results show that time delay, Allee effect, and fractional diffusion can affect the formation 3D Turing patterns such as spherical, tube, spherical and tube coexisting and the constitution of 3D spiral wave patterns.

Suggested Citation

  • Bi, Zhimin & Liu, Shutang & Ouyang, Miao, 2022. "Spatial dynamics of a fractional predator-prey system with time delay and Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006440
    DOI: 10.1016/j.chaos.2022.112434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922006440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Winston Campeau & Andrew M Simons & Brett Stevens, 2022. "The evolutionary maintenance of Lévy flight foraging," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-26, January.
    2. David W. Sims & Emily J. Southall & Nicolas E. Humphries & Graeme C. Hays & Corey J. A. Bradshaw & Jonathan W. Pitchford & Alex James & Mohammed Z. Ahmed & Andrew S. Brierley & Mark A. Hindell & David, 2008. "Scaling laws of marine predator search behaviour," Nature, Nature, vol. 451(7182), pages 1098-1102, February.
    3. Yousef, Fatma Bozkurt & Yousef, Ali & Maji, Chandan, 2021. "Effects of fear in a fractional-order predator-prey system with predator density-dependent prey mortality," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Tao, Xiangyu & Zhu, Linhe, 2021. "Study of periodic diffusion and time delay induced spatiotemporal patterns in a predator-prey system," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. Yupin Wang & Shutang Liu & Hui Li, 2021. "New Fractal Sets Coined From Fractional Maps," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(08), pages 1-12, December.
    6. Yang, Ruizhi & Wei, Junjie, 2015. "Bifurcation analysis of a diffusive predator–prey system with nonconstant death rate and Holling III functional response," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 1-13.
    7. Nicolas E. Humphries & Nuno Queiroz & Jennifer R. M. Dyer & Nicolas G. Pade & Michael K. Musyl & Kurt M. Schaefer & Daniel W. Fuller & Juerg M. Brunnschweiler & Thomas K. Doyle & Jonathan D. R. Hought, 2010. "Environmental context explains Lévy and Brownian movement patterns of marine predators," Nature, Nature, vol. 465(7301), pages 1066-1069, June.
    8. Das, Bijoy Kumar & Sahoo, Debgopal & Samanta, G.P., 2022. "Impact of fear in a delay-induced predator–prey system with intraspecific competition within predator species," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 134-156.
    9. Bi, Zhimin & Liu, Shutang & Ouyang, Miao, 2022. "Three-dimensional pattern dynamics of a fractional predator-prey model with cross-diffusion and herd behavior," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    10. Wang, Jingjing & Zheng, Hongchan & Jia, Yunfeng, 2021. "Dynamical analysis on a bacteria-phages model with delay and diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    11. Wang, Yupin & Liu, Shutang & Li, Hui & Wang, Da, 2019. "On the spatial Julia set generated by fractional Lotka-Volterra system with noise," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 129-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Owolabi, Kolade M. & Jain, Sonal, 2023. "Spatial patterns through diffusion-driven instability in modified predator–prey models with chaotic behaviors," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Zhang, Huayong & Guo, Fenglu & Zou, Hengchao & Zhao, Lei & Wang, Zhongyu & Yuan, Xiaotong & Liu, Zhao, 2024. "Refuge-driven spatiotemporal chaos in a discrete predator-prey system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nauta, Johannes & Simoens, Pieter & Khaluf, Yara, 2022. "Group size and resource fractality drive multimodal search strategies: A quantitative analysis on group foraging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    2. Wang, Yupin & Li, Xiaodi & Wang, Da & Liu, Shutang, 2022. "A brief note on fractal dynamics of fractional Mandelbrot sets," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    3. Shinohara, Shuji & Okamoto, Hiroshi & Manome, Nobuhito & Gunji, Pegio-Yukio & Nakajima, Yoshihiro & Moriyama, Toru & Chung, Ung-il, 2022. "Simulation of foraging behavior using a decision-making agent with Bayesian and inverse Bayesian inference: Temporal correlations and power laws in displacement patterns," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Toman, Kellan & Voulgarakis, Nikolaos K., 2022. "Stochastic pursuit-evasion curves for foraging dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    5. Cao, Jiajia & Zhou, Yanbin & Wei, Kun, 2024. "Modeling ants’ walks in patrolling multiple resources using stochastic approximation partial momentum refreshment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    6. Bi, Zhimin & Liu, Shutang & Ouyang, Miao, 2022. "Three-dimensional pattern dynamics of a fractional predator-prey model with cross-diffusion and herd behavior," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    7. Muhammad Irfan & Abdul Wadood & Tahir Khurshaid & Bakht Muhammad Khan & Ki-Chai Kim & Seung-Ryle Oh & Sang-Bong Rhee, 2021. "An Optimized Adaptive Protection Scheme for Numerical and Directional Overcurrent Relay Coordination Using Harris Hawk Optimization," Energies, MDPI, vol. 14(18), pages 1-21, September.
    8. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    9. Andy Reynolds & Eliane Ceccon & Cristina Baldauf & Tassia Karina Medeiros & Octavio Miramontes, 2018. "Lévy foraging patterns of rural humans," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    10. Jana, Debaldev & Pathak, Rachana & Agarwal, Manju, 2016. "On the stability and Hopf bifurcation of a prey-generalist predator system with independent age-selective harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 252-273.
    11. Cao, Yan & Zhou, Wei-Jie & Liu, Xiao-Zhen & Wu, Kai-Ning, 2024. "Passivity of fractional reaction-diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    12. LaScala-Gruenewald, Diana E. & Mehta, Rohan S. & Liu, Yu & Denny, Mark W., 2019. "Sensory perception plays a larger role in foraging efficiency than heavy-tailed movement strategies," Ecological Modelling, Elsevier, vol. 404(C), pages 69-82.
    13. Danish A. Ahmed & Sergei V. Petrovskii & Paulo F. C. Tilles, 2018. "The “Lévy or Diffusion” Controversy: How Important Is the Movement Pattern in the Context of Trapping?," Mathematics, MDPI, vol. 6(5), pages 1-27, May.
    14. Andrea Censi & Andrew D Straw & Rosalyn W Sayaman & Richard M Murray & Michael H Dickinson, 2013. "Discriminating External and Internal Causes for Heading Changes in Freely Flying Drosophila," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-14, February.
    15. Majumdar, Prahlad & Mondal, Bapin & Debnath, Surajit & Ghosh, Uttam, 2022. "Controlling of periodicity and chaos in a three dimensional prey predator model introducing the memory effect," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    16. Pierpaolo Andriani & Bill McKelvey, 2009. "Perspective ---From Gaussian to Paretian Thinking: Causes and Implications of Power Laws in Organizations," Organization Science, INFORMS, vol. 20(6), pages 1053-1071, December.
    17. Qi Quan & Xiangjun Dai & Jianjun Jiao, 2023. "Dynamics of a Predator–Prey Model with Impulsive Diffusion and Transient/Nontransient Impulsive Harvesting," Mathematics, MDPI, vol. 11(14), pages 1-25, July.
    18. Yang, Yi & Huang, Jin, 2024. "Double fast algorithm for solving time-space fractional diffusion problems with spectral fractional Laplacian," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    19. Reynolds, A.M., 2011. "On the origin of bursts and heavy tails in animal dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 245-249.
    20. Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2024. "Cross-diffusion mediated Spatiotemporal patterns in a predator–prey system with hunting cooperation and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 128-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.