IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v549y2020ics0378437119321764.html
   My bibliography  Save this article

Analysis of noise-induced phenomena in the nonlinear tumor–immune system

Author

Listed:
  • Bashkirtseva, I.
  • Ryashko, L.

Abstract

The effect of random disturbances on the corporate dynamics of immune and tumor cells is studied on the basis of the mathematical model proposed by Kuznetsov et al. This model possesses two equilibria corresponding to opposite regimes of ”tumor dormancy” and ”tumor explosion”. We study the system dynamics under the variation of the parameter of inactivation of immune cells by tumor cells. For deterministic model, parametric mono- and bistable zones and the corresponding changes in the basins of attraction are described. We investigate how the multiplicative random noise can change the dynamics of this tumor–immune system. Mechanisms of the noise-induced suppression and growth of tumor cells are investigated in detail. Furthermore, we reveal that near the saddle–node bifurcation points, the random disturbances can destroy the bistability and generate the intermittent oscillations between high and low levels of tumor cells. We perform an analysis of these phenomena by a novel approach based on the stochastic sensitivity functions and confidence domains.

Suggested Citation

  • Bashkirtseva, I. & Ryashko, L., 2020. "Analysis of noise-induced phenomena in the nonlinear tumor–immune system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
  • Handle: RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437119321764
    DOI: 10.1016/j.physa.2019.123923
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119321764
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123923?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bashkirtseva, I.A & Ryashko, L.B, 2000. "Sensitivity analysis of the stochastically and periodically forced Brusselator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(1), pages 126-139.
    2. Liu, Xiangdong & Li, Qingze & Pan, Jianxin, 2018. "A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 162-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Mengli & Jia, Wantao & Wang, Liang & Li, Fuxiao, 2022. "Most probable trajectory of a tumor model with immune response subjected to asymmetric Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bashkirtseva, Irina & Ryashko, Lev, 2017. "Stochastic sensitivity analysis of noise-induced order-chaos transitions in discrete-time systems with tangent and crisis bifurcations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 573-584.
    2. Byun, Jong Hyuk & Jung, Il Hyo, 2021. "Phase-specific cancer-immune model considering acquired resistance to therapeutic agents," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    3. Bashkirtseva, I.A. & Ryashko, L.B., 2004. "Stochastic sensitivity of 3D-cycles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 66(1), pages 55-67.
    4. Duan, Wei-Long & Fang, Hui & Zeng, Chunhua, 2019. "The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 96-102.
    5. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Duan, Wei-Long, 2020. "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    7. Han, Ping & Xu, Wei & Wang, Liang & Zhang, Hongxia & Ma, Shichao, 2020. "Most probable dynamics of the tumor growth model with immune surveillance under cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    8. Bashkirtseva, Irina & Ryashko, Lev, 2013. "Stochastic sensitivity analysis of noise-induced intermittency and transition to chaos in one-dimensional discrete-time systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 295-306.
    9. Fathalla A. Rihan & Chinnathambi Rajivganthi, 2021. "Dynamics of Tumor-Immune System with Random Noise," Mathematics, MDPI, vol. 9(21), pages 1-14, October.
    10. Ryashko, L. & Bashkirtseva, I. & Gubkin, A. & Stikhin, P., 2009. "Confidence tori in the analysis of stochastic 3D-cycles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 256-269.
    11. Irina Bashkirtseva & Davide Radi & Lev Ryashko & Tatyana Ryazanova, 2018. "On the Stochastic Sensitivity and Noise-Induced Transitions of a Kaldor-Type Business Cycle Model," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 699-718, March.
    12. Mandal, Partha Sarathi, 2018. "Noise-induced extinction for a ratio-dependent predator–prey model with strong Allee effect in prey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 40-52.
    13. Bashkirtseva, Irina & Ryashko, Lev, 2005. "Sensitivity and chaos control for the forced nonlinear oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1437-1451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437119321764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.