IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v158y2022ics0960077922001631.html
   My bibliography  Save this article

Transition and basin stability in a stochastic tumor growth model with immunization

Author

Listed:
  • Hua, Mengjiao
  • Wu, Yu

Abstract

The phenomenon of noise-induced transition driven by the correlated Gaussian and non-Gaussian colored noises is investigated by the first escape probability (FEP) and the mean first exit time (MFET). To derive the Markovian approximation of the original tumor growth model and obtain the analytical expressions of the FEP and MFET, we reduce the non-Gaussian colored noise and then expand the unified colored noise approximation (UCNA). Additionally, the stochastic basin of attraction (SBA), a recent geometric concept based on the FEP and MFET, is introduced to provide further insight into the effects of noisy fluctuations on the basin stability of a certain domain. A higher FEP or shorter MFET in the high tumor population region B facilitates the transition from B to the low tumor population region Bc, which indicates the weaker stability of domain B. Our main results demonstrate that (i) the transitions from B to Bc can be induced by both the Gaussian and non-Gaussian noise sources; (ii) the stronger noise intensity, especially the non-Gaussian noise intensity, with a larger deviation parameter and immune coefficient improves the FEP, shortens the MFET, and hence benefits the transitions. However, the enlargement of the correlation between noises strengthens the basin stability of domain B and impedes the transitions; (iii) the size of SBA expands due to the larger cross-correlated intensity. In contrast, the enhancements of noise intensities with a larger departure degree reduce the size of SBA, which weakens the basin stability and is less in favor of tumor treatment. Furthermore, the Monte Carlo simulations of the original system are employed to verify the feasibility and accuracy of the analytical predictions.

Suggested Citation

  • Hua, Mengjiao & Wu, Yu, 2022. "Transition and basin stability in a stochastic tumor growth model with immunization," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922001631
    DOI: 10.1016/j.chaos.2022.111953
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922001631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Yong & Feng, Jing & Li, JuanJuan & Zhang, Huiqing, 2013. "Stochastic bifurcation for a tumor–immune system with symmetric Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4739-4748.
    2. Guttal, Vishwesha & Jayaprakash, C., 2007. "Impact of noise on bistable ecological systems," Ecological Modelling, Elsevier, vol. 201(3), pages 420-428.
    3. Guo, Wei & Du, Lu-Chun & Mei, Dong-Cheng, 2012. "Transitions induced by time delays and cross-correlated sine-Wiener noises in a tumor–immune system interplay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1270-1280.
    4. Fuentes, M.A. & Wio, Horacio S. & Toral, Raúl, 2002. "Effective Markovian approximation for non-Gaussian noises: a path integral approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 303(1), pages 91-104.
    5. Zhang, Hongxia & Xu, Wei & Guo, Qin & Han, Ping & Qiao, Yan, 2020. "First escape probability and mean first exit time for a time-delayed ecosystem driven by non-Gaussian colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    6. Guo, Yongfeng & Wang, Linjie & Wei, Fang & Tan, Jianguo, 2019. "Dynamical behavior of simplified FitzHugh-Nagumo neural system driven by Lévy noise and Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 118-126.
    7. Nicholas J. Guido & Xiao Wang & David Adalsteinsson & David McMillen & Jeff Hasty & Charles R. Cantor & Timothy C. Elston & J. J. Collins, 2006. "A bottom-up approach to gene regulation," Nature, Nature, vol. 439(7078), pages 856-860, February.
    8. Guo, Wei & Mei, Dong-Cheng, 2014. "Stochastic resonance in a tumor–immune system subject to bounded noises and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 90-98.
    9. Bouzat, Sebastián & Wio, Horacio S., 2005. "New aspects on current enhancement in Brownian motors driven by non-Gaussian noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 351(1), pages 69-78.
    10. Song, Yi & Xu, Wei, 2021. "Asymmetric Lévy noise changed stability in a gene transcriptional regulatory system," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    11. A. Fiasconaro & A. Ochab-Marcinek & B. Spagnolo & E. Gudowska-Nowak, 2008. "Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(3), pages 435-442, October.
    12. Guo, Qin & Sun, Zhongkui & Xu, Wei, 2016. "The properties of the anti-tumor model with coupling non-Gaussian noise and Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 43-52.
    13. Fuentes, M.A. & Toral, Raúl & Wio, Horacio S., 2001. "Enhancement of stochastic resonance: the role of non Gaussian noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(1), pages 114-122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianguo Tan & Wenjuan Wang & Jianfeng Feng, 2022. "Transient Dynamics Analysis of a Predator-Prey System with Square Root Functional Responses and Random Perturbation," Mathematics, MDPI, vol. 10(21), pages 1-12, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Ping & Xu, Wei & Zhang, Hongxia & Wang, Liang, 2022. "Most probable trajectories in the delayed tumor growth model excited by a multiplicative non-Gaussian noise," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Guo, Qin & Sun, Zhongkui & Xu, Wei, 2016. "The properties of the anti-tumor model with coupling non-Gaussian noise and Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 43-52.
    3. Zhu, Ping, 2021. "An equivalent analytical method to deal with cross-correlated exponential type noises in the nonlinear dynamic system," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Zhang, Ruiting & Hou, Zhonghuai & Xin, Houwen, 2011. "Effects of non-Gaussian noise near supercritical Hopf bifurcation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 147-153.
    5. Hao, Mengli & Jia, Wantao & Wang, Liang & Li, Fuxiao, 2022. "Most probable trajectory of a tumor model with immune response subjected to asymmetric Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    6. Wu, Jiancheng & Li, Xuan & Liu, Xianbin, 2016. "The moment Lyapunov exponent of a co-dimension two bifurcation system driven by non-Gaussian colored noise," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 189-200.
    7. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    8. Duan, Wei-Long, 2020. "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    9. Zhang, Hongxia & Xu, Wei & Guo, Qin & Han, Ping & Qiao, Yan, 2020. "First escape probability and mean first exit time for a time-delayed ecosystem driven by non-Gaussian colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    10. Wu, Jian-Li & Duan, Wei-Long & Luo, Yuhui & Yang, Fengzao, 2020. "Time delay and non-Gaussian noise-enhanced stability of foraging colony system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    11. Wei, Wei & Xu, Wei & Song, Yi & Liu, Jiankang, 2021. "Bifurcation and basin stability of an SIR epidemic model with limited medical resources and switching noise," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Zhang, Huiqing & Xu, Wei & Xu, Yong, 2009. "The study on a stochastic system with non-Gaussian noise and Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 781-788.
    13. Dong, Xiaohui & Wang, Ming & Zhong, Guang-Yan & Yang, Fengzao & Duan, Weilong & Li, Jiang-Cheng & Xiong, Kezhao & Zeng, Chunhua, 2018. "Stochastic delayed kinetics of foraging colony system under non-Gaussian noise," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 1-13.
    14. Liu, Pei & Ning, Li Juan, 2016. "Transitions induced by cross-correlated bounded noises and time delay in a genotype selection model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 32-39.
    15. Liu, Xiangdong & Li, Qingze & Pan, Jianxin, 2018. "A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 162-176.
    16. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    17. Hussain, Javed & Bano, Zarqa & Ahmed, Waleed & Shahid, Saba, 2022. "Analysis of stochastic dynamics of tumor with drug interventions," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    18. Chun Zhang & Tao Yang & Shi-Xian Qu, 2021. "Impact of time delays and environmental noise on the extinction of a population dynamics model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-16, November.
    19. Bashkirtseva, Irina, 2018. "Stochastic sensitivity of systems driven by colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 729-736.
    20. Fahimi, Milad & Nouri, Kazem & Torkzadeh, Leila, 2020. "Chaos in a stochastic cancer model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922001631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.