IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v598y2022ics0378437122002369.html
   My bibliography  Save this article

Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction

Author

Listed:
  • Wang, Guowei
  • Wu, Yong
  • Xiao, Fangli
  • Ye, Zhiqiu
  • Jia, Ya

Abstract

Inverse stochastic resonance refers to the phenomenon that the average firing rate of a neuron is inhibited by noise, of which mechanism is widely used in a variety of biological cells and economic phenomena. In this paper, a bistable Izhikevich neural model and triple-neuron feed-forward loop Izhikevich neural network motifs under the effects of electromagnetic induction are constructed to investigate the phenomenon of inverse stochastic resonance induced by Non-Gaussian colored noise and electrical autapse. It is found that there exists a minimum value of the average firing rate curve caused by intensity of non-Gaussian colored noise, which is the phenomenon of inverse stochastic resonance. Obtained results also show that the inverse stochastic resonance induced by electrical autapse shows a decaying oscillation process with respect to synaptic delay time, and further research indicates that average firing rate has several minimums as a function of time delay of electrical autapse, which is called multiple inverse stochastic resonance. Furthermore, the inverse stochastic resonance in triple-neuron feed-forward loop Izhikevich neural network motifs are also examined, and it is confirmed that the responses of single Izhikevich neuron and neural network motifs to different parameters show consistency under same conditions, but also show some differences. Finally, the effects of electromagnetic induction on inverse stochastic resonance are checked both in single Izhikevich neural model and feed-forward loop network motifs. Electromagnetic induction feedback gain coefficient k1 should not be too large under certain conditions, otherwise it may cause FFL network motifs to loss the function of suppressing the discharge activity. No matter how the values of electromagnetic induction parameter k2 and magnetic flux leakage coefficient k3 change, they basically cannot affect the ISR in the feed-forward loop neural network motifs The conclusions of this paper may help researchers understanding how using unique mechanism of inverse stochastic resonance to find advantages and avoid disadvantages in biomedical field and many interdisciplinary research.

Suggested Citation

  • Wang, Guowei & Wu, Yong & Xiao, Fangli & Ye, Zhiqiu & Jia, Ya, 2022. "Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
  • Handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s0378437122002369
    DOI: 10.1016/j.physa.2022.127274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122002369
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aghababaei, Sajedeh & Balaraman, Sundarambal & Rajagopal, Karthikeyan & Parastesh, Fatemeh & Panahi, Shirin & Jafari, Sajad, 2021. "Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. Li, Fan & Liu, Shuai & Li, Xiaola, 2022. "Pattern selection in thermosensitive neuron network induced by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    3. Ni Zhang & Dongxi Li & Yanya Xing, 2021. "Autapse-induced multiple inverse stochastic resonance in a neural system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    4. Uzun, Rukiye & Yilmaz, Ergin & Ozer, Mahmut, 2017. "Effects of autapse and ion channel block on the collective firing activity of Newman–Watts small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 386-396.
    5. Kafraj, Mohadeseh Shafiei & Parastesh, Fatemeh & Jafari, Sajad, 2020. "Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    6. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Han, Qinglin & Yang, Tao & Zeng, Chunhua & Wang, Hua & Liu, Zhiqiang & Fu, Yunchang & Zhang, Chun & Tian, Dong, 2014. "Impact of time delays on stochastic resonance in an ecological system describing vegetation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 96-105.
    8. Yu, Dong & Lu, Lulu & Wang, Guowei & Yang, Lijian & Jia, Ya, 2021. "Synchronization mode transition induced by bounded noise in multiple time-delays coupled FitzHugh–Nagumo model," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    9. Wang, Guowei & Yu, Dong & Ding, Qianming & Li, Tianyu & Jia, Ya, 2021. "Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Deng, Bin & Deng, Yun & Yu, Haitao & Guo, Xinmeng & Wang, Jiang, 2016. "Dependence of inter-neuronal effective connectivity on synchrony dynamics in neuronal network motifs," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 48-59.
    11. Xu, Ying & Guo, Yeye & Ren, Guodong & Ma, Jun, 2020. "Dynamics and stochastic resonance in a thermosensitive neuron," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    12. Uzuntarla, Muhammet & Uzun, Rukiye & Yilmaz, Ergin & Ozer, Mahmut & Perc, Matjaž, 2013. "Noise-delayed decay in the response of a scale-free neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 202-208.
    13. Ge, Mengyan & Lu, Lulu & Xu, Ying & Mamatimin, Rozihajim & Pei, Qiming & Jia, Ya, 2020. "Vibrational mono-/bi-resonance and wave propagation in FitzHugh–Nagumo neural systems under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    14. Raimo, Dario & Sarracino, Alessandro & de Arcangelis, Lucilla, 2021. "Role of inhibitory neurons in temporal correlations of critical and supercritical spontaneous activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    15. Hou, Zhangliang & Ma, Jun & Zhan, Xuan & Yang, Lijian & Jia, Ya, 2021. "Estimate the electrical activity in a neuron under depolarization field," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Ma, Jun & Mi, Lv & Zhou, Ping & Xu, Ying & Hayat, Tasawar, 2017. "Phase synchronization between two neurons induced by coupling of electromagnetic field," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 321-328.
    17. Zhang, Ge & Wang, Chunni & Alzahrani, Faris & Wu, Fuqiang & An, Xinlei, 2018. "Investigation of dynamical behaviors of neurons driven by memristive synapse," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 15-24.
    18. Uzun, Rukiye, 2017. "Influences of autapse and channel blockage on multiple coherence resonance in a single neuron," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 203-210.
    19. Ge, Mengyan & Jia, Ya & Xu, Ying & Lu, Lulu & Wang, Huiwen & Zhao, Yunjie, 2019. "Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 136-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaijun Wu & Jiawei Li, 2023. "Effects of high–low-frequency electromagnetic radiation on vibrational resonance in FitzHugh–Nagumo neuronal systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(9), pages 1-19, September.
    2. Baysal, Veli & Solmaz, Ramazan & Ma, Jun, 2023. "Investigation of chaotic resonance in Type-I and Type-II Morris-Lecar neurons," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    3. Yao, Chenggui & Yao, Yuangen & Qian, Yu & Xu, Xufan, 2022. "Temperature-controlled propagation of spikes in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Li, Tianyu & Wu, Yong & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2022. "Spike-timing-dependent plasticity enhances chaotic resonance in small-world network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    5. Shadizadeh, S. Mohadeseh & Nazarimehr, Fahimeh & Jafari, Sajad & Rajagopal, Karthikeyan, 2022. "Investigating different synaptic connections of the Chay neuron model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    6. Ding, Qianming & Wu, Yong & Li, Tianyu & Yu, Dong & Jia, Ya, 2023. "Metabolic energy consumption and information transmission of a two-compartment neuron model and its cortical network," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    7. Xiao, Fangli & Fu, Ziying & Jia, Ya & Yang, Lijian, 2023. "Resonance effects in neuronal-astrocyte model with ion channel blockage," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Li, Tianyu & Wu, Yong & Yang, Lijian & Fu, Ziying & Jia, Ya, 2023. "Neuronal morphology and network properties modulate signal propagation in multi-layer feedforward network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    11. Cambraia, E.B.S.A. & Flauzino, J.V.V. & Prado, T.L. & Lopes, S.R., 2023. "Dependence on the local dynamics of a network phase synchronization process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Njitacke, Zeric Tabekoueng & Takembo, Clovis Ntahkie & Awrejcewicz, Jan & Fouda, Henri Paul Ekobena & Kengne, Jacques, 2022. "Hamilton energy, complex dynamical analysis and information patterns of a new memristive FitzHugh-Nagumo neural network," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Shadizadeh, S. Mohadeseh & Nazarimehr, Fahimeh & Jafari, Sajad & Rajagopal, Karthikeyan, 2022. "Investigating different synaptic connections of the Chay neuron model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    4. Li, Tianyu & Wu, Yong & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2022. "Spike-timing-dependent plasticity enhances chaotic resonance in small-world network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    5. Xiao, Fangli & Fu, Ziying & Jia, Ya & Yang, Lijian, 2023. "Resonance effects in neuronal-astrocyte model with ion channel blockage," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    6. Fossi, Jules Tagne & Njitacke, Zeric Tabekoueng & Tankeu, William Nguimeya & Mendimi, Joseph Marie & Awrejcewicz, Jan & Atangana, Jacques, 2023. "Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    7. Li, Tianyu & Wu, Yong & Yang, Lijian & Fu, Ziying & Jia, Ya, 2023. "Neuronal morphology and network properties modulate signal propagation in multi-layer feedforward network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Ding, Qianming & Wu, Yong & Li, Tianyu & Yu, Dong & Jia, Ya, 2023. "Metabolic energy consumption and information transmission of a two-compartment neuron model and its cortical network," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    9. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    10. Kaijun Wu & Jiawei Li, 2023. "Effects of high–low-frequency electromagnetic radiation on vibrational resonance in FitzHugh–Nagumo neuronal systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(9), pages 1-19, September.
    11. Njitacke, Zeric Tabekoueng & Ramakrishnan, Balamurali & Rajagopal, Karthikeyan & Fonzin Fozin, Théophile & Awrejcewicz, Jan, 2022. "Extremely rich dynamics of coupled heterogeneous neurons through a Josephson junction synapse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    12. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Fu, Peng & Wang, Can-Jun & Yang, Ke-Li & Li, Xu-Bo & Yu, Biao, 2022. "Reentrance-like vibrational resonance in a fractional-order birhythmic biological system," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    14. Wang, Guowei & Yu, Dong & Ding, Qianming & Li, Tianyu & Jia, Ya, 2021. "Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Li, Fan & Liu, Shuai & Li, Xiaola, 2022. "Pattern selection in thermosensitive neuron network induced by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    16. Yu, Dong & Lu, Lulu & Wang, Guowei & Yang, Lijian & Jia, Ya, 2021. "Synchronization mode transition induced by bounded noise in multiple time-delays coupled FitzHugh–Nagumo model," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    17. Ni Zhang & Dongxi Li & Yanya Xing, 2021. "Autapse-induced multiple inverse stochastic resonance in a neural system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    18. Wu, Fuqiang & Gu, Huaguang & Jia, Yanbing, 2021. "Bifurcations underlying different excitability transitions modulated by excitatory and inhibitory memristor and chemical autapses," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    19. Wang, Xueqin & Yu, Dong & Li, Tianyu & Jia, Ya, 2023. "Logistic stochastic resonance in the Hodgkin–Huxley neuronal system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    20. Sun, Guoping & Yang, Feifei & Ren, Guodong & Wang, Chunni, 2023. "Energy encoding in a biophysical neuron and adaptive energy balance under field coupling," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s0378437122002369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.