IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v185y2024ics0960077924007070.html
   My bibliography  Save this article

Markovian noise-induced delta synchronization approach for Hindmarsh–Rose model

Author

Listed:
  • Akhmet, Marat
  • Başkan, Kağan
  • Yeşil, Cihan

Abstract

The paper explores noise-induced synchronization in uncoupled Hindmarsh–Rose neurons, introducing two distinctive elements: the application of Markovian noise and an analysis of synchronization via unpredictability. The noise is defined as an unpredictable and continuous process with characteristics proper for stochasticity. While identical synchronization is also investigated, the primary focus is to reveal synchronization in noise intensity domains that elude conventional detection methods, through delta synchronization within the neural system. Furthermore, a stronger form of synchronization, namely complete synchronization of unpredictability, is found to emerge in the domain with identical synchronization. The research findings are substantiated by numerical outcomes assessing unpredictability and synchronization, alongside comprehensive tables displaying characteristic time sequences for synchronization.

Suggested Citation

  • Akhmet, Marat & Başkan, Kağan & Yeşil, Cihan, 2024. "Markovian noise-induced delta synchronization approach for Hindmarsh–Rose model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924007070
    DOI: 10.1016/j.chaos.2024.115155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924007070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924007070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.