IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v592y2022ics0378437121009997.html
   My bibliography  Save this article

Tipping points of a complex network biomass model: Local and global parameter variations

Author

Listed:
  • Moghadam, Nastaran Navid
  • Ramamoorthy, Ramesh
  • Nazarimehr, Fahimeh
  • Rajagopal, Karthikeyan
  • Jafari, Sajad

Abstract

Researchers are eager to understand how real-world systems respond to environmental parameter changes, especially in complex networks. In biological systems like genetic networks or ecological systems, the presence of agents in the networks has been proved. Hence, studying the tipping points and finding a way to manage them can prevent the extinction of natural networks. In this paper, the tipping points of a network of the biomass model are studied. Two cases are discussed for the bifurcations of the network. In the first case, the parameters of the nodes are varied globally, and their bifurcations are studied in various cases of parameter changings. In the second case, the parameters are changed locally, and the tipping points’ propagation through the neighbor nodes is discussed. However, the focus of the paper is on the bifurcations of the complex network model; we hope that this study can help understand the tipping points of real-world complex systems.

Suggested Citation

  • Moghadam, Nastaran Navid & Ramamoorthy, Ramesh & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Jafari, Sajad, 2022. "Tipping points of a complex network biomass model: Local and global parameter variations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
  • Handle: RePEc:eee:phsmap:v:592:y:2022:i:c:s0378437121009997
    DOI: 10.1016/j.physa.2021.126845
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121009997
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Navid Moghadam, Nastaran & Nazarimehr, Fahimeh & Jafari, Sajad & Sprott, Julien C., 2020. "Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    2. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    3. Vasilis Dakos & Stephen R Carpenter & William A Brock & Aaron M Ellison & Vishwesha Guttal & Anthony R Ives & Sonia Kéfi & Valerie Livina & David A Seekell & Egbert H van Nes & Marten Scheffer, 2012. "Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-20, July.
    4. Marten Scheffer, 2010. "Foreseeing tipping points," Nature, Nature, vol. 467(7314), pages 411-412, September.
    5. Stefan Rahmstorf, 2002. "Ocean circulation and climate during the past 120,000 years," Nature, Nature, vol. 419(6903), pages 207-214, September.
    6. Ying Xu & Ya Jia & John Billy Kirunda & Jian Shen & Mengyan Ge & Lulu Lu & Qiming Pei, 2018. "Dynamic Behaviors in Coupled Neuron System with the Excitatory and Inhibitory Autapse under Electromagnetic Induction," Complexity, Hindawi, vol. 2018, pages 1-13, July.
    7. Hou, Zhangliang & Ma, Jun & Zhan, Xuan & Yang, Lijian & Jia, Ya, 2021. "Estimate the electrical activity in a neuron under depolarization field," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Gang-Jin Wang & Shuyue Yi & Chi Xie & H. Eugene Stanley, 2021. "Multilayer information spillover networks: measuring interconnectedness of financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 21(7), pages 1163-1185, July.
    9. Ge, Mengyan & Jia, Ya & Xu, Ying & Lu, Lulu & Wang, Huiwen & Zhao, Yunjie, 2019. "Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 136-145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatiana Baumuratova & Simona Dobre & Thierry Bastogne & Thomas Sauter, 2013. "Switch of Sensitivity Dynamics Revealed with DyGloSA Toolbox for Dynamical Global Sensitivity Analysis as an Early Warning for System's Critical Transition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    2. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Lu, Lulu & Ge, Mengyan & Xu, Ying & Jia, Ya, 2019. "Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh–Nagumo model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Georg Jäger & Manfred Füllsack, 2019. "Systematically false positives in early warning signal analysis," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-14, February.
    5. Aghababaei, Sajedeh & Balaraman, Sundarambal & Rajagopal, Karthikeyan & Parastesh, Fatemeh & Panahi, Shirin & Jafari, Sajad, 2021. "Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Trisha L Spanbauer & Craig R Allen & David G Angeler & Tarsha Eason & Sherilyn C Fritz & Ahjond S Garmestani & Kirsty L Nash & Jeffery R Stone, 2014. "Prolonged Instability Prior to a Regime Shift," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    7. Zvonko Kostanjcar & Stjepan Begusic & H. E. Stanley & Boris Podobnik, 2015. "Estimating Tipping Points in Feedback-Driven Financial Networks," Papers 1509.04952, arXiv.org.
    8. Wang, Guowei & Wu, Yong & Xiao, Fangli & Ye, Zhiqiu & Jia, Ya, 2022. "Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    9. Fossi, Jules Tagne & Njitacke, Zeric Tabekoueng & Tankeu, William Nguimeya & Mendimi, Joseph Marie & Awrejcewicz, Jan & Atangana, Jacques, 2023. "Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    10. William A Brock & Stephen R Carpenter, 2012. "Early Warnings of Regime Shift When the Ecosystem Structure Is Unknown," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-10, September.
    11. Ge, Mengyan & Lu, Lulu & Xu, Ying & Mamatimin, Rozihajim & Pei, Qiming & Jia, Ya, 2020. "Vibrational mono-/bi-resonance and wave propagation in FitzHugh–Nagumo neural systems under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    12. Wang, Guowei & Yu, Dong & Ding, Qianming & Li, Tianyu & Jia, Ya, 2021. "Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    13. Riddhi Singh & Julianne D Quinn & Patrick M Reed & Klaus Keller, 2018. "Skill (or lack thereof) of data-model fusion techniques to provide an early warning signal for an approaching tipping point," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    14. Li, Fan & Liu, Shuai & Li, Xiaola, 2022. "Pattern selection in thermosensitive neuron network induced by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    15. Yu, Dong & Lu, Lulu & Wang, Guowei & Yang, Lijian & Jia, Ya, 2021. "Synchronization mode transition induced by bounded noise in multiple time-delays coupled FitzHugh–Nagumo model," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    16. Tirabassi, Giulio & Masoller, Cristina, 2022. "Correlation lags give early warning signals of approaching bifurcations," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    17. Ni Zhang & Dongxi Li & Yanya Xing, 2021. "Autapse-induced multiple inverse stochastic resonance in a neural system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    18. Hou, Zhangliang & Ma, Jun & Zhan, Xuan & Yang, Lijian & Jia, Ya, 2021. "Estimate the electrical activity in a neuron under depolarization field," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    19. Georg Jäger & Christian Hofer & Marie Kapeller & Manfred Füllsack, 2017. "Hidden early-warning signals in scale-free networks," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-14, December.
    20. Joël Berger, 2021. "Social Tipping Interventions Can Promote the Diffusion or Decay of Sustainable Consumption Norms in the Field. Evidence from a Quasi-Experimental Intervention Study," Sustainability, MDPI, vol. 13(6), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:592:y:2022:i:c:s0378437121009997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.