IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v38y2022i3p1221-1233.html
   My bibliography  Save this article

Endemic-epidemic models with discrete-time serial interval distributions for infectious disease prediction

Author

Listed:
  • Bracher, Johannes
  • Held, Leonhard

Abstract

Multivariate count time series models are an important tool for analyzing and predicting the spread of infectious disease. We consider the endemic-epidemic framework, a class of autoregressive models for infectious disease surveillance counts, and replace the default autoregression on counts from the previous time period with more flexible weighting schemes inspired by discrete-time serial interval distributions. We employ three different parametric formulations, each with an additional unknown weighting parameter estimated via a profile likelihood approach, and compare them to an unrestricted nonparametric approach. The new methods are illustrated in a univariate analysis of dengue fever incidence in San Juan, Puerto Rico, and a spatiotemporal study of viral gastroenteritis in the 12 districts of Berlin. We assess the predictive performance of the suggested models and several reference models at various forecast horizons. In both applications, the performance of the endemic-epidemic models is considerably improved by the proposed weighting schemes.

Suggested Citation

  • Bracher, Johannes & Held, Leonhard, 2022. "Endemic-epidemic models with discrete-time serial interval distributions for infectious disease prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1221-1233.
  • Handle: RePEc:eee:intfor:v:38:y:2022:i:3:p:1221-1233
    DOI: 10.1016/j.ijforecast.2020.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207020301060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2020.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. Nicholas G Reich & Stephen A Lauer & Krzysztof Sakrejda & Sopon Iamsirithaworn & Soawapak Hinjoy & Paphanij Suangtho & Suthanun Suthachana & Hannah E Clapham & Henrik Salje & Derek A T Cummings & Just, 2016. "Challenges in Real-Time Prediction of Infectious Disease: A Case Study of Dengue in Thailand," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(6), pages 1-17, June.
    3. Claudia Czado & Tilmann Gneiting & Leonhard Held, 2009. "Predictive Model Assessment for Count Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1254-1261, December.
    4. Cathy W. S. Chen & Khemmanant Khamthong & Sangyeol Lee, 2019. "Markov switching integer‐valued generalized auto‐regressive conditional heteroscedastic models for dengue counts," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(4), pages 963-983, August.
    5. Heinen, Andreas & Rengifo, Erick, 2007. "Multivariate autoregressive modeling of time series count data using copulas," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 564-583, September.
    6. Meyer, Sebastian & Held, Leonhard & Höhle, Michael, 2017. "Spatio-Temporal Analysis of Epidemic Phenomena Using the R Package surveillance," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i11).
    7. Cici Bauer & Jon Wakefield, 2018. "Stratified space–time infectious disease modelling, with an application to hand, foot and mouth disease in China," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1379-1398, November.
    8. Tilmann Gneiting & Larissa Stanberry & Eric Grimit & Leonhard Held & Nicholas Johnson, 2008. "Rejoinder on: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 256-264, August.
    9. Tilmann Gneiting & Larissa Stanberry & Eric Grimit & Leonhard Held & Nicholas Johnson, 2008. "Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 211-235, August.
    10. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    11. Amir S Siraj & Rachel J Oidtman & John H Huber & Moritz U G Kraemer & Oliver J Brady & Michael A Johansson & T Alex Perkins, 2017. "Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(7), pages 1-19, July.
    12. Yan Cui & Fukang Zhu, 2018. "A new bivariate integer-valued GARCH model allowing for negative cross-correlation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 428-452, June.
    13. Fukang Zhu, 2011. "A negative binomial integer‐valued GARCH model," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(1), pages 54-67, January.
    14. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    15. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    16. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    17. Dunsmuir, William T. M. & Scott, David J., 2015. "The glarma Package for Observation-Driven Time Series Regression of Counts," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i07).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held, 2022. "Session 3 of the RSS Special Topic Meeting on Covid‐19 Transmission: Replies to the discussion," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 158-164, November.
    2. Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held & the SUSPend modelling consortium, 2022. "Assessing the effect of school closures on the spread of COVID‐19 in Zurich," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 131-142, November.
    3. Chen, Cathy W.S. & Chen, Chun-Shu & Hsiung, Mo-Hua, 2023. "Bayesian modeling of spatial integer-valued time series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
    2. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Yan Cui & Qi Li & Fukang Zhu, 2020. "Flexible bivariate Poisson integer-valued GARCH model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1449-1477, December.
    6. L. Held & K. Rufibach & F. Balabdaoui, 2010. "A Score Regression Approach to Assess Calibration of Continuous Probabilistic Predictions," Biometrics, The International Biometric Society, vol. 66(4), pages 1295-1305, December.
    7. Florian Ziel & Kevin Berk, 2019. "Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules," Papers 1910.07325, arXiv.org.
    8. Marcin Jurek & Matthias Katzfuss, 2023. "Scalable spatio‐temporal smoothing via hierarchical sparse Cholesky decomposition," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    9. Grothe, Oliver & Kächele, Fabian & Krüger, Fabian, 2023. "From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 120(C).
    10. Wei Wei & Leonhard Held, 2014. "Calibration tests for count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 787-805, December.
    11. Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388, April.
    12. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    13. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    14. Stover, Oliver & Nath, Paromita & Karve, Pranav & Mahadevan, Sankaran & Baroud, Hiba, 2024. "Dependence structure learning and joint probabilistic forecasting of stochastic power grid variables," Applied Energy, Elsevier, vol. 357(C).
    15. Allen, Sam & Koh, Jonathan & Segers, Johan & Ziegel, Johanna, 2024. "Tail calibration of probabilistic forecasts," LIDAM Discussion Papers ISBA 2024018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Peter McAdam & Anders Warne, 2024. "Density forecast combinations: The real‐time dimension," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1153-1172, August.
    17. van der Meer, Dennis & Wang, Guang Chao & Munkhammar, Joakim, 2021. "An alternative optimal strategy for stochastic model predictive control of a residential battery energy management system with solar photovoltaic," Applied Energy, Elsevier, vol. 283(C).
    18. Mikkel L. Sørensen & Peter Nystrup & Mathias B. Bjerregård & Jan K. Møller & Peder Bacher & Henrik Madsen, 2023. "Recent developments in multivariate wind and solar power forecasting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    19. Roland Weigand, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," Working Papers 144, Bavarian Graduate Program in Economics (BGPE).
    20. Li, Qi & Lian, Heng & Zhu, Fukang, 2016. "Robust closed-form estimators for the integer-valued GARCH (1,1) model," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 209-225.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:38:y:2022:i:3:p:1221-1233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.