IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v39y2019i3p647-661.html
   My bibliography  Save this article

Modeling the Effectiveness of Respiratory Protective Devices in Reducing Influenza Outbreak

Author

Listed:
  • Jing Yan
  • Suvajyoti Guha
  • Prasanna Hariharan
  • Matthew Myers

Abstract

Outbreaks of influenza represent an important health concern worldwide. In many cases, vaccines are only partially successful in reducing the infection rate, and respiratory protective devices (RPDs) are used as a complementary countermeasure. In devising a protection strategy against influenza for a given population, estimates of the level of protection afforded by different RPDs is valuable. In this article, a risk assessment model previously developed in general form was used to estimate the effectiveness of different types of protective equipment in reducing the rate of infection in an influenza outbreak. It was found that a 50% compliance in donning the device resulted in a significant (at least 50% prevalence and 20% cumulative incidence) reduction in risk for fitted and unfitted N95 respirators, high‐filtration surgical masks, and both low‐filtration and high‐filtration pediatric masks. An 80% compliance rate essentially eliminated the influenza outbreak. The results of the present study, as well as the application of the model to related influenza scenarios, are potentially useful to public health officials in decisions involving resource allocation or education strategies.

Suggested Citation

  • Jing Yan & Suvajyoti Guha & Prasanna Hariharan & Matthew Myers, 2019. "Modeling the Effectiveness of Respiratory Protective Devices in Reducing Influenza Outbreak," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 647-661, March.
  • Handle: RePEc:wly:riskan:v:39:y:2019:i:3:p:647-661
    DOI: 10.1111/risa.13181
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13181
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin J. Cowling & Dennis K. M. Ip & Vicky J. Fang & Piyarat Suntarattiwong & Sonja J. Olsen & Jens Levy & Timothy M. Uyeki & Gabriel M. Leung & J. S. Malik Peiris & Tawee Chotpitayasunondh & Hiros, 2013. "Aerosol transmission is an important mode of influenza A virus spread," Nature Communications, Nature, vol. 4(1), pages 1-6, October.
    2. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    3. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baloch, Gohram & Gzara, Fatma & Elhedhli, Samir, 2023. "Risk-based allocation of COVID-19 personal protective equipment under supply shortages," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1085-1100.
    2. Farouk Daghistani, 2023. "Public Behavior in Urban Parks during Pandemics as a Foundation for Risk Assessment by Park Managers: A Case Study in Saudi Arabia," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    3. Chan, Elisa K., 2023. "Pandemic experience and locus of protection," Annals of Tourism Research, Elsevier, vol. 100(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gail E. Potter & Nicole Bohme Carnegie & Jonathan D. Sugimoto & Aldiouma Diallo & John C. Victor & Kathleen M. Neuzil & M. Elizabeth Halloran, 2022. "Using social contact data to improve the overall effect estimate of a cluster‐randomized influenza vaccination program in Senegal," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 70-90, January.
    2. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    3. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    4. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    5. Rocha Filho, T.M. & Moret, M.A. & Chow, C.C. & Phillips, J.C. & Cordeiro, A.J.A. & Scorza, F.A. & Almeida, A.-C.G. & Mendes, J.F.F., 2021. "A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    7. Rhodes, Christopher A. & House, Thomas, 2013. "The rate of convergence to early asymptotic behaviour in age-structured epidemic models," Theoretical Population Biology, Elsevier, vol. 85(C), pages 58-62.
    8. Tobias Brett & Marco Ajelli & Quan-Hui Liu & Mary G Krauland & John J Grefenstette & Willem G van Panhuis & Alessandro Vespignani & John M Drake & Pejman Rohani, 2020. "Detecting critical slowing down in high-dimensional epidemiological systems," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-19, March.
    9. David J. Haw & Christian Morgenstern & Giovanni Forchini & Robert Johnson & Patrick Doohan & Peter C. Smith & Katharina D. Hauck, 2022. "Data needs for integrated economic-epidemiological models of pandemic mitigation policies," Papers 2209.01487, arXiv.org.
    10. Bracher, Johannes & Held, Leonhard, 2022. "Endemic-epidemic models with discrete-time serial interval distributions for infectious disease prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1221-1233.
    11. Sze-chuan Suen & Margaret L. Brandeau & Jeremy D. Goldhaber-Fiebert, 2018. "Optimal timing of drug sensitivity testing for patients on first-line tuberculosis treatment," Health Care Management Science, Springer, vol. 21(4), pages 632-646, December.
    12. Xi Guo & Abhineet Gupta & Anand Sampat & Chengwei Zhai, 2022. "A stochastic contact network model for assessing outbreak risk of COVID-19 in workplaces," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-23, January.
    13. Wei Zhong & Yushim Kim & Megan Jehn, 2013. "Modeling dynamics of an influenza pandemic with heterogeneous coping behaviors: case study of a 2009 H1N1 outbreak in Arizona," Computational and Mathematical Organization Theory, Springer, vol. 19(4), pages 622-645, December.
    14. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    15. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    16. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    17. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    18. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    19. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    20. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:39:y:2019:i:3:p:647-661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.