IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0262316.html
   My bibliography  Save this article

A stochastic contact network model for assessing outbreak risk of COVID-19 in workplaces

Author

Listed:
  • Xi Guo
  • Abhineet Gupta
  • Anand Sampat
  • Chengwei Zhai

Abstract

The COVID-19 pandemic has drastically shifted the way people work. While many businesses can operate remotely, a large number of jobs can only be performed on-site. Moreover as businesses create plans for bringing workers back on-site, they are in need of tools to assess the risk of COVID-19 for their employees in the workplaces. This study aims to fill the gap in risk modeling of COVID-19 outbreaks in facilities like offices and warehouses. We propose a simulation-based stochastic contact network model to assess the cumulative incidence in workplaces. First-generation cases are introduced as a Bernoulli random variable using the local daily new case rate as the success rate. Contact networks are established through randomly sampled daily contacts for each of the first-generation cases and successful transmissions are established based on a randomized secondary attack rate (SAR). Modification factors are provided for SAR based on changes in airflow, speaking volume, and speaking activity within a facility. Control measures such as mask wearing are incorporated through modifications in SAR. We validated the model by comparing the distribution of cumulative incidence in model simulations against real-world outbreaks in workplaces and nursing homes. The comparisons support the model’s validity for estimating cumulative incidences for short forecasting periods of up to 15 days. We believe that the current study presents an effective tool for providing short-term forecasts of COVID-19 cases for workplaces and for quantifying the effectiveness of various control measures. The open source model code is made available at github.com/abhineetgupta/covid-workplace-risk.

Suggested Citation

  • Xi Guo & Abhineet Gupta & Anand Sampat & Chengwei Zhai, 2022. "A stochastic contact network model for assessing outbreak risk of COVID-19 in workplaces," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-23, January.
  • Handle: RePEc:plo:pone00:0262316
    DOI: 10.1371/journal.pone.0262316
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262316
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0262316&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0262316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wee Chian Koh & Lin Naing & Liling Chaw & Muhammad Ali Rosledzana & Mohammad Fathi Alikhan & Sirajul Adli Jamaludin & Faezah Amin & Asiah Omar & Alia Shazli & Matthew Griffith & Roberta Pastore & Just, 2020. "What do we know about SARS-CoV-2 transmission? A systematic review and meta-analysis of the secondary attack rate and associated risk factors," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-23, October.
    2. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    3. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    4. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    2. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    3. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    4. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    5. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Lingcai Kong & Jinfeng Wang & Weiguo Han & Zhidong Cao, 2016. "Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model," IJERPH, MDPI, vol. 13(3), pages 1-13, February.
    7. Mark D Jankowski & Christopher J Williams & Jeanne M Fair & Jennifer C Owen, 2013. "Birds Shed RNA-Viruses According to the Pareto Principle," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    8. Yeongseon Park & Michael A. Martin & Katia Koelle, 2023. "Epidemiological inference for emerging viruses using segregating sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    10. Rocha Filho, T.M. & Moret, M.A. & Chow, C.C. & Phillips, J.C. & Cordeiro, A.J.A. & Scorza, F.A. & Almeida, A.-C.G. & Mendes, J.F.F., 2021. "A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Žiga Zaplotnik & Aleksandar Gavrić & Luka Medic, 2020. "Simulation of the COVID-19 epidemic on the social network of Slovenia: Estimating the intrinsic forecast uncertainty," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-22, August.
    12. Rhodes, Christopher A. & House, Thomas, 2013. "The rate of convergence to early asymptotic behaviour in age-structured epidemic models," Theoretical Population Biology, Elsevier, vol. 85(C), pages 58-62.
    13. Tobias Brett & Marco Ajelli & Quan-Hui Liu & Mary G Krauland & John J Grefenstette & Willem G van Panhuis & Alessandro Vespignani & John M Drake & Pejman Rohani, 2020. "Detecting critical slowing down in high-dimensional epidemiological systems," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-19, March.
    14. Lambert, Sébastien & Gilot-Fromont, Emmanuelle & Toïgo, Carole & Marchand, Pascal & Petit, Elodie & Garin-Bastuji, Bruno & Gauthier, Dominique & Gaillard, Jean-Michel & Rossi, Sophie & Thébault, Anne, 2020. "An individual-based model to assess the spatial and individual heterogeneity of Brucella melitensis transmission in Alpine ibex," Ecological Modelling, Elsevier, vol. 425(C).
    15. David J. Haw & Christian Morgenstern & Giovanni Forchini & Robert Johnson & Patrick Doohan & Peter C. Smith & Katharina D. Hauck, 2022. "Data needs for integrated economic-epidemiological models of pandemic mitigation policies," Papers 2209.01487, arXiv.org.
    16. Bracher, Johannes & Held, Leonhard, 2022. "Endemic-epidemic models with discrete-time serial interval distributions for infectious disease prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1221-1233.
    17. Gail E. Potter & Nicole Bohme Carnegie & Jonathan D. Sugimoto & Aldiouma Diallo & John C. Victor & Kathleen M. Neuzil & M. Elizabeth Halloran, 2022. "Using social contact data to improve the overall effect estimate of a cluster‐randomized influenza vaccination program in Senegal," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 70-90, January.
    18. Sze-chuan Suen & Margaret L. Brandeau & Jeremy D. Goldhaber-Fiebert, 2018. "Optimal timing of drug sensitivity testing for patients on first-line tuberculosis treatment," Health Care Management Science, Springer, vol. 21(4), pages 632-646, December.
    19. Audrey McCombs & Claus Kadelka, 2020. "A model-based evaluation of the efficacy of COVID-19 social distancing, testing and hospital triage policies," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-18, October.
    20. Jing Yan & Suvajyoti Guha & Prasanna Hariharan & Matthew Myers, 2019. "Modeling the Effectiveness of Respiratory Protective Devices in Reducing Influenza Outbreak," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 647-661, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0262316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.