IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v146y2021ics0960077921001508.html
   My bibliography  Save this article

Using time causal quantifiers to characterize sleep stages

Author

Listed:
  • Mateos, Diego M.
  • Gómez-Ramírez, Jaime
  • Rosso, Osvaldo A.

Abstract

Sleep plays a substantial role in daily cognitive performance, mood, and memory. The study of sleep has attracted the interest of neuroscientists, clinicians and the overall population, with an increasing number of adults suffering from insufficient amounts of sleep. Sleep is an activity composed of different stages whose temporal dynamics, cycles and interdependencies are not fully understood. Healthy body function and personal well being, however, depends on the proper unfolding and continuance of the sleep cycles. The characterization of the different sleep stages can be undertaken with the development of biomarkers derived from sleep recording. For this purpose, in this work we analyzed single-channel EEG signals from 106 healthy subjects. The signals were quantified using the permutation vector approach using five different-information theoretic measures: i) Shannon’s entropy, ii) MPR statistical complexity, iii) Fisher information, iv) Renyí Min-entropy and v) Lempel-Ziv complexity. The results show that all five information theory-based measures make it possible to quantify and classify the underlying dynamics of the different sleep stages. In addition to this, we combine these measures to show that planes containing pairs of measures, such as the plane composed of Lempel-Ziv and Shannon, have a better performance for differentiating sleep states than measures used individually for the same purpose.

Suggested Citation

  • Mateos, Diego M. & Gómez-Ramírez, Jaime & Rosso, Osvaldo A., 2021. "Using time causal quantifiers to characterize sleep stages," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921001508
    DOI: 10.1016/j.chaos.2021.110798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921001508
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Zozor & D. Mateos & P. Lamberti, 2014. "Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-state sequences," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(5), pages 1-12, May.
    2. Rosso, Osvaldo A. & De Micco, Luciana & Plastino, A. & Larrondo, Hilda A., 2010. "Info-quantifiers’ map-characterization revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4604-4612.
    3. Lamberti, P.W & Martin, M.T & Plastino, A & Rosso, O.A, 2004. "Intensive entropic non-triviality measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 334(1), pages 119-131.
    4. Mateos, Diego M. & Zozor, Steeve & Olivares, Felipe, 2020. "Contrasting stochasticity with chaos in a permutation Lempel–Ziv complexity — Shannon entropy plane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    5. Martin, M.T. & Plastino, A. & Rosso, O.A., 2006. "Generalized statistical complexity measures: Geometrical and analytical properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 439-462.
    6. Robert Stickgold, 2005. "Sleep-dependent memory consolidation," Nature, Nature, vol. 437(7063), pages 1272-1278, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boaretto, Bruno R.R. & Budzinski, Roberto C. & Rossi, Kalel L. & Masoller, Cristina & Macau, Elbert E.N., 2023. "Spatial permutation entropy distinguishes resting brain states," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Amadio, Ariel & Rey, Andrea & Legnani, Walter & Blesa, Manuel García & Bonini, Cristian & Otero, Dino, 2023. "Mathematical and informational tools for classifying blood glucose signals - a pilot study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    3. Gu, Danlei & Lin, Aijing & Lin, Guancen, 2022. "Sleep and cardiac signal processing using improved multivariate partial compensated transfer entropy based on non-uniform embedding," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montani, Fernando & Deleglise, Emilia B. & Rosso, Osvaldo A., 2014. "Efficiency characterization of a large neuronal network: A causal information approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 58-70.
    2. De Micco, Luciana & Fernández, Juana Graciela & Larrondo, Hilda A. & Plastino, Angelo & Rosso, Osvaldo A., 2012. "Sampling period, statistical complexity, and chaotic attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2564-2575.
    3. Baravalle, Roman & Rosso, Osvaldo A. & Montani, Fernando, 2017. "A path integral approach to the Hodgkin–Huxley model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 986-999.
    4. Aurelio F. Bariviera & Luciano Zunino & Osvaldo A. Rosso, 2016. "Crude Oil Market And Geopolitical Events: An Analysis Based On Information-Theory-Based Quantifiers," Fuzzy Economic Review, International Association for Fuzzy-set Management and Economy (SIGEF), vol. 21(1), pages 41-51, May.
    5. Aquino, Andre L.L. & Ramos, Heitor S. & Frery, Alejandro C. & Viana, Leonardo P. & Cavalcante, Tamer S.G. & Rosso, Osvaldo A., 2017. "Characterization of electric load with Information Theory quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 277-284.
    6. Bariviera, Aurelio F. & Font-Ferrer, Alejandro & Sorrosal-Forradellas, M. Teresa & Rosso, Osvaldo A., 2019. "An information theory perspective on the informational efficiency of gold price," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    7. Fernandes, Leonardo H.S. & de Araujo, Fernando H.A. & Tabak, Benjamin M., 2021. "Insights from the (in)efficiency of Chinese sectoral indices during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    8. Calbet, Xavier & López-Ruiz, Ricardo, 2007. "Extremum complexity distribution of a monodimensional ideal gas out of equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 523-530.
    9. Aurelio Fernandez Bariviera & María Belén Guercio & Lisana B. Martinez & Osvaldo A. Rosso, 2015. "The (in)visible hand in the Libor market: an information theory approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(8), pages 1-9, August.
    10. Zhang, Boyi & Shang, Pengjian & Zhou, Qin, 2021. "The identification of fractional order systems by multiscale multivariate analysis," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    12. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    13. Lima, David H.S. & Aquino, Andre L.L. & Rosso, Osvaldo A. & Curado, Marilia, 2024. "Characterization of task allocation techniques in data centers based on information theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    14. de Novaes Pires Leite, Gustavo & da Cunha, Guilherme Tenório Maciel & dos Santos Junior, José Guilhermino & Araújo, Alex Maurício & Rosas, Pedro André Carvalho & Stosic, Tatijana & Stosic, Borko & Ros, 2021. "Alternative fault detection and diagnostic using information theory quantifiers based on vibration time-waveforms from condition monitoring systems: Application to operational wind turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1183-1194.
    15. Argyroudis, George S. & Siokis, Fotios M., 2019. "Spillover effects of Great Recession on Hong-Kong’s Real Estate Market: An analysis based on Causality Plane and Tsallis Curves of Complexity–Entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 576-586.
    16. Jauregui, M. & Zunino, L. & Lenzi, E.K. & Mendes, R.S. & Ribeiro, H.V., 2018. "Characterization of time series via Rényi complexity–entropy curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 74-85.
    17. Aurelio F. Bariviera & Luciano Zunino & Osvaldo A. Rosso, 2018. "An analysis of high-frequency cryptocurrencies prices dynamics using permutation-information-theory quantifiers," Papers 1808.01926, arXiv.org.
    18. Baravalle, Roman & Rosso, Osvaldo A. & Montani, Fernando, 2018. "Discriminating imagined and non-imagined tasks in the motor cortex area: Entropy-complexity plane with a wavelet decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 27-39.
    19. Šapina, Matej & Karmakar, Chandan Kumar & Kramarić, Karolina & Kośmider, Marcin & Garcin, Matthieu & Brdarić, Dario & Milas, Krešimir & Yearwood, John, 2021. "Lempel-Ziv complexity of the pNNx statistics – an application to neonatal stress," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    20. Zunino, Luciano & Ribeiro, Haroldo V., 2016. "Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 679-688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921001508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.