IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v634y2024ics0378437123010026.html
   My bibliography  Save this article

Characterization of task allocation techniques in data centers based on information theory

Author

Listed:
  • Lima, David H.S.
  • Aquino, Andre L.L.
  • Rosso, Osvaldo A.
  • Curado, Marilia

Abstract

We present a comprehensive characterization of task allocation techniques in data centers based on information theory, focusing specifically on Shannon Entropy and Statistical Complexity. This study investigates the potential benefits and limitations of using information theory-based integrated into different task allocation techniques. We conduct experiments using a realistic simulation environment. We evaluate the number of tasks allocated over time and the evolution of queue size over time. For this purpose, we used the Google Dataset. This trace represents 29 days’ of information on a cluster of about 12.5k machines. It contains detailed information on job submissions, task execution, resource usage, and scheduling decisions. Our findings demonstrate the potential of information theory-based to identify the task allocation process using different strategies.

Suggested Citation

  • Lima, David H.S. & Aquino, Andre L.L. & Rosso, Osvaldo A. & Curado, Marilia, 2024. "Characterization of task allocation techniques in data centers based on information theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
  • Handle: RePEc:eee:phsmap:v:634:y:2024:i:c:s0378437123010026
    DOI: 10.1016/j.physa.2023.129447
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123010026
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    2. Martin, M.T. & Plastino, A. & Rosso, O.A., 2006. "Generalized statistical complexity measures: Geometrical and analytical properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 439-462.
    3. Silva, Antonio Samuel Alves & Menezes, Rômulo Simões Cezar & Rosso, Osvaldo A. & Stosic, Borko & Stosic, Tatijana, 2021. "Complexity entropy-analysis of monthly rainfall time series in northeastern Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Araújo, Felipe & Bastos, Lucas & Medeiros, Iago & Rosso, Osvaldo A. & Aquino, Andre L.L. & Rosário, Denis & Cerqueira, Eduardo, 2023. "Characterization of human mobility based on Information Theory quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Lamberti, P.W & Martin, M.T & Plastino, A & Rosso, O.A, 2004. "Intensive entropic non-triviality measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 334(1), pages 119-131.
    6. Wang, Gangjin & Wei, Daijun & Li, Xiangbo & Wang, Ningkui, 2023. "A novel method for local anomaly detection of time series based on multi entropy fusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    7. Ribeiro, Haroldo V. & Zunino, Luciano & Mendes, Renio S. & Lenzi, Ervin K., 2012. "Complexity–entropy causality plane: A useful approach for distinguishing songs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2421-2428.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bariviera, Aurelio F. & Font-Ferrer, Alejandro & Sorrosal-Forradellas, M. Teresa & Rosso, Osvaldo A., 2019. "An information theory perspective on the informational efficiency of gold price," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    2. Fernandes, Leonardo H.S. & de Araujo, Fernando H.A. & Tabak, Benjamin M., 2021. "Insights from the (in)efficiency of Chinese sectoral indices during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    3. Zhang, Boyi & Shang, Pengjian & Zhou, Qin, 2021. "The identification of fractional order systems by multiscale multivariate analysis," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    5. de Novaes Pires Leite, Gustavo & da Cunha, Guilherme Tenório Maciel & dos Santos Junior, José Guilhermino & Araújo, Alex Maurício & Rosas, Pedro André Carvalho & Stosic, Tatijana & Stosic, Borko & Ros, 2021. "Alternative fault detection and diagnostic using information theory quantifiers based on vibration time-waveforms from condition monitoring systems: Application to operational wind turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1183-1194.
    6. Jauregui, M. & Zunino, L. & Lenzi, E.K. & Mendes, R.S. & Ribeiro, H.V., 2018. "Characterization of time series via Rényi complexity–entropy curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 74-85.
    7. Zunino, Luciano & Ribeiro, Haroldo V., 2016. "Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 679-688.
    8. Fernandes, Leonardo H.S. & Araújo, Fernando H.A., 2020. "Taxonomy of commodities assets via complexity-entropy causality plane," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    9. Aquino, Andre L.L. & Ramos, Heitor S. & Frery, Alejandro C. & Viana, Leonardo P. & Cavalcante, Tamer S.G. & Rosso, Osvaldo A., 2017. "Characterization of electric load with Information Theory quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 277-284.
    10. Aurelio F. Bariviera & Luciano Zunino & Osvaldo A. Rosso, 2016. "Crude Oil Market And Geopolitical Events: An Analysis Based On Information-Theory-Based Quantifiers," Fuzzy Economic Review, International Association for Fuzzy-set Management and Economy (SIGEF), vol. 21(1), pages 41-51, May.
    11. Montani, Fernando & Deleglise, Emilia B. & Rosso, Osvaldo A., 2014. "Efficiency characterization of a large neuronal network: A causal information approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 58-70.
    12. Calbet, Xavier & López-Ruiz, Ricardo, 2007. "Extremum complexity distribution of a monodimensional ideal gas out of equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 523-530.
    13. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M. & Neto, Jusie S.P., 2021. "Macroeconophysics indicator of economic efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    14. Aurelio Fernandez Bariviera & María Belén Guercio & Lisana B. Martinez & Osvaldo A. Rosso, 2015. "The (in)visible hand in the Libor market: an information theory approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(8), pages 1-9, August.
    15. Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Libor at crossroads: Stochastic switching detection using information theory quantifiers," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 172-182.
    16. Zunino, Luciano & Fernández Bariviera, Aurelio & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2012. "On the efficiency of sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4342-4349.
    17. Rosso, Osvaldo A. & Craig, Hugh & Moscato, Pablo, 2009. "Shakespeare and other English Renaissance authors as characterized by Information Theory complexity quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 916-926.
    18. de Araujo, Fernando Henrique Antunes & Bejan, Lucian & Stosic, Borko & Stosic, Tatijana, 2020. "An analysis of Brazilian agricultural commodities using permutation – information theory quantifiers: The influence of food crisis," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    19. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    20. Wang, Zhuo & Shang, Pengjian, 2021. "Generalized entropy plane based on multiscale weighted multivariate dispersion entropy for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:634:y:2024:i:c:s0378437123010026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.