IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v164y2021icp1183-1194.html
   My bibliography  Save this article

Alternative fault detection and diagnostic using information theory quantifiers based on vibration time-waveforms from condition monitoring systems: Application to operational wind turbines

Author

Listed:
  • de Novaes Pires Leite, Gustavo
  • da Cunha, Guilherme Tenório Maciel
  • dos Santos Junior, José Guilhermino
  • Araújo, Alex Maurício
  • Rosas, Pedro André Carvalho
  • Stosic, Tatijana
  • Stosic, Borko
  • Rosso, Osvaldo Anibal

Abstract

Wind turbines operate almost uninterruptedly, and their operation is often subject to harsh environments, as well as complex and dynamic loads. Fourier analysis, a standard diagnostic technique, presents some limitations regarding the use of non-stationary, non-periodic, noisy data, which is precisely the case with wind turbine data. Due to these limitations, unseen faults could progress and cause severe, and even catastrophic, failure in wind turbines. Information theory quantifiers, such as entropy, divergence, and, statistical complexity measure, are proposed to evaluate the health status of wind turbine components. In this work, this is done via the decomposition of the signal in time, frequency, and time-frequency domain, namely via Bandt and Pompe, power spectrum, and wavelet packet decomposition. Two different real data sets from operational wind turbines were characterized by the proposed methods. Results demonstrate that the proposed method can distinguish (cluster) well between the states of fault, but also presented some limitations, mainly related to the complexity of the signal from operational wind turbines. Based on these results, new methods, complementary to Fourier analysis, are proposed to be employed in wind turbine data, aiming to increase the capability of detecting faults in such a complex environment.

Suggested Citation

  • de Novaes Pires Leite, Gustavo & da Cunha, Guilherme Tenório Maciel & dos Santos Junior, José Guilhermino & Araújo, Alex Maurício & Rosas, Pedro André Carvalho & Stosic, Tatijana & Stosic, Borko & Ros, 2021. "Alternative fault detection and diagnostic using information theory quantifiers based on vibration time-waveforms from condition monitoring systems: Application to operational wind turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1183-1194.
  • Handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1183-1194
    DOI: 10.1016/j.renene.2020.10.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120317018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    2. Baravalle, Roman & Rosso, Osvaldo A. & Montani, Fernando, 2018. "Discriminating imagined and non-imagined tasks in the motor cortex area: Entropy-complexity plane with a wavelet decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 27-39.
    3. Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
    4. Leite, Gustavo de Novaes Pires & Araújo, Alex Maurício & Rosas, Pedro André Carvalho & Stosic, Tatijana & Stosic, Borko, 2019. "Entropy measures for early detection of bearing faults," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 458-472.
    5. Lamberti, P.W & Martin, M.T & Plastino, A & Rosso, O.A, 2004. "Intensive entropic non-triviality measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 334(1), pages 119-131.
    6. Ribeiro, Haroldo V. & Zunino, Luciano & Mendes, Renio S. & Lenzi, Ervin K., 2012. "Complexity–entropy causality plane: A useful approach for distinguishing songs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2421-2428.
    7. Martin, M.T. & Plastino, A. & Rosso, O.A., 2006. "Generalized statistical complexity measures: Geometrical and analytical properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 439-462.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing, Zuoxia & Chen, Mingyang & Cui, Jia & Chen, Zhe & Xu, Jian, 2022. "Detection of magnitude and position of rotor aerodynamic imbalance of wind turbines using Convolutional Neural Network," Renewable Energy, Elsevier, vol. 197(C), pages 1020-1033.
    2. David Pérez Granados & Mauricio Alberto Ortega Ruiz & Joel Moreira Acosta & Sergio Arturo Gama Lara & Roberto Adrián González Domínguez & Pedro Jacinto Páramo Kañetas, 2023. "A Wind Turbine Vibration Monitoring System for Predictive Maintenance Based on Machine Learning Methods Developed under Safely Controlled Laboratory Conditions," Energies, MDPI, vol. 16(5), pages 1-17, February.
    3. Wang, Anqi & Qian, Zheng & Pei, Yan & Jing, Bo, 2022. "A de-ambiguous condition monitoring scheme for wind turbines using least squares generative adversarial networks," Renewable Energy, Elsevier, vol. 185(C), pages 267-279.
    4. Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernandes, Leonardo H.S. & de Araujo, Fernando H.A. & Tabak, Benjamin M., 2021. "Insights from the (in)efficiency of Chinese sectoral indices during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    2. Zhang, Boyi & Shang, Pengjian & Zhou, Qin, 2021. "The identification of fractional order systems by multiscale multivariate analysis," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    4. Lima, David H.S. & Aquino, Andre L.L. & Rosso, Osvaldo A. & Curado, Marilia, 2024. "Characterization of task allocation techniques in data centers based on information theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    5. Jauregui, M. & Zunino, L. & Lenzi, E.K. & Mendes, R.S. & Ribeiro, H.V., 2018. "Characterization of time series via Rényi complexity–entropy curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 74-85.
    6. Zunino, Luciano & Ribeiro, Haroldo V., 2016. "Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 679-688.
    7. Aquino, Andre L.L. & Ramos, Heitor S. & Frery, Alejandro C. & Viana, Leonardo P. & Cavalcante, Tamer S.G. & Rosso, Osvaldo A., 2017. "Characterization of electric load with Information Theory quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 277-284.
    8. Bariviera, Aurelio F. & Font-Ferrer, Alejandro & Sorrosal-Forradellas, M. Teresa & Rosso, Osvaldo A., 2019. "An information theory perspective on the informational efficiency of gold price," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    9. Aurelio F. Bariviera & Luciano Zunino & Osvaldo A. Rosso, 2016. "Crude Oil Market And Geopolitical Events: An Analysis Based On Information-Theory-Based Quantifiers," Fuzzy Economic Review, International Association for Fuzzy-set Management and Economy (SIGEF), vol. 21(1), pages 41-51, May.
    10. Montani, Fernando & Deleglise, Emilia B. & Rosso, Osvaldo A., 2014. "Efficiency characterization of a large neuronal network: A causal information approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 58-70.
    11. Calbet, Xavier & López-Ruiz, Ricardo, 2007. "Extremum complexity distribution of a monodimensional ideal gas out of equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 523-530.
    12. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M. & Neto, Jusie S.P., 2021. "Macroeconophysics indicator of economic efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    13. Aurelio Fernandez Bariviera & María Belén Guercio & Lisana B. Martinez & Osvaldo A. Rosso, 2015. "The (in)visible hand in the Libor market: an information theory approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(8), pages 1-9, August.
    14. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    15. Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Libor at crossroads: Stochastic switching detection using information theory quantifiers," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 172-182.
    16. Zunino, Luciano & Fernández Bariviera, Aurelio & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2012. "On the efficiency of sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4342-4349.
    17. Rosso, Osvaldo A. & Craig, Hugh & Moscato, Pablo, 2009. "Shakespeare and other English Renaissance authors as characterized by Information Theory complexity quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 916-926.
    18. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    19. Yang, Wenguang & Liu, Chao & Jiang, Dongxiang, 2018. "An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring," Renewable Energy, Elsevier, vol. 127(C), pages 230-241.
    20. Wang, Zhuo & Shang, Pengjian, 2021. "Generalized entropy plane based on multiscale weighted multivariate dispersion entropy for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1183-1194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.