IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v171y2023ics0960077923003545.html
   My bibliography  Save this article

Spatial permutation entropy distinguishes resting brain states

Author

Listed:
  • Boaretto, Bruno R.R.
  • Budzinski, Roberto C.
  • Rossi, Kalel L.
  • Masoller, Cristina
  • Macau, Elbert E.N.

Abstract

We use ordinal analysis and spatial permutation entropy to distinguish between eyes-open and eyes-closed resting brain states. To do so, we analyze EEG data recorded with 64 electrodes from 109 healthy subjects, under two one-minute baseline runs: One with eyes open, and one with eyes closed. We use spatial ordinal analysis to distinguish between these states, where the permutation entropy is evaluated considering the spatial distribution of electrodes for each time instant. We analyze both raw and post-processed data considering only the alpha-band frequency (8–12Hz) which is known to be important for resting states in the brain. We conclude that spatial ordinal analysis captures information about correlations between time series in different electrodes. This allows the discrimination of eyes closed and eyes open resting states in both raw and filtered data. Filtering the data only amplifies the distinction between states. Importantly, our approach does not require EEG signal pre-processing, which is an advantage for real-time applications, such as brain-computer interfaces.

Suggested Citation

  • Boaretto, Bruno R.R. & Budzinski, Roberto C. & Rossi, Kalel L. & Masoller, Cristina & Macau, Elbert E.N., 2023. "Spatial permutation entropy distinguishes resting brain states," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:chsofr:v:171:y:2023:i:c:s0960077923003545
    DOI: 10.1016/j.chaos.2023.113453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923003545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silva, Antonio Samuel Alves & Menezes, Rômulo Simões Cezar & Rosso, Osvaldo A. & Stosic, Borko & Stosic, Tatijana, 2021. "Complexity entropy-analysis of monthly rainfall time series in northeastern Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Zachary W. Davis & Lyle Muller & Julio Martinez-Trujillo & Terrence Sejnowski & John H. Reynolds, 2020. "Spontaneous travelling cortical waves gate perception in behaving primates," Nature, Nature, vol. 587(7834), pages 432-436, November.
    3. Alves Xavier, Sílvio Fernando & Xavier, Érika Fialho Morais & Jale, Jader Silva & Stosic, Tatijana & Santos, Carlos Antonio Costa dos, 2021. "Multiscale entropy analysis of monthly rainfall time series in Paraíba, Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Haroldo V Ribeiro & Luciano Zunino & Ervin K Lenzi & Perseu A Santoro & Renio S Mendes, 2012. "Complexity-Entropy Causality Plane as a Complexity Measure for Two-Dimensional Patterns," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-9, August.
    5. de Araujo, Fernando Henrique Antunes & Bejan, Lucian & Stosic, Borko & Stosic, Tatijana, 2020. "An analysis of Brazilian agricultural commodities using permutation – information theory quantifiers: The influence of food crisis," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Echegoyen, I. & Vera-Ávila, V. & Sevilla-Escoboza, R. & Martínez, J.H. & Buldú, J.M., 2019. "Ordinal synchronization: Using ordinal patterns to capture interdependencies between time series," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 8-18.
    7. Chi Qin Lai & Haidi Ibrahim & Shahrel Azmin Suandi & Mohd Zaid Abdullah, 2022. "Convolutional Neural Network for Closed-Set Identification from Resting State Electroencephalography," Mathematics, MDPI, vol. 10(19), pages 1-16, September.
    8. Mateos, Diego M. & Gómez-Ramírez, Jaime & Rosso, Osvaldo A., 2021. "Using time causal quantifiers to characterize sleep stages," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deka, Bhabesh & Deka, Dipen, 2022. "An improved multiscale distribution entropy for analyzing complexity of real-world signals," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Fernandes, Leonardo H.S. & Bouri, Elie & Silva, José W.L. & Bejan, Lucian & de Araujo, Fernando H.A., 2022. "The resilience of cryptocurrency market efficiency to COVID-19 shock," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Dominik P. Koller & Michael Schirner & Petra Ritter, 2024. "Human connectome topology directs cortical traveling waves and shapes frequency gradients," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Gu, Danlei & Lin, Aijing & Lin, Guancen, 2022. "Sleep and cardiac signal processing using improved multivariate partial compensated transfer entropy based on non-uniform embedding," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    5. Betken, Annika & Dehling, Herold & Nüßgen, Ines & Schnurr, Alexander, 2021. "Ordinal pattern dependence as a multivariate dependence measure," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    6. Anirban Das & Alec G. Sheffield & Anirvan S. Nandy & Monika P. Jadi, 2024. "Brain-state mediated modulation of inter-laminar dependencies in visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Zhang, Boyi & Shang, Pengjian & Zhou, Qin, 2021. "The identification of fractional order systems by multiscale multivariate analysis," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    8. Patrick Jendritza & Frederike J. Klein & Pascal Fries, 2023. "Multi-area recordings and optogenetics in the awake, behaving marmoset," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Aguirre, J. & Almendral, J.A. & Buldú, J.M. & Criado, R. & Gutiérrez, R. & Leyva, I. & Romance, M. & Sendiña-Nadal, I., 2019. "Experimental complexity in physical, social and biological systems," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 200-202.
    10. Pessa, Arthur A.B. & Zola, Rafael S. & Perc, Matjaž & Ribeiro, Haroldo V., 2022. "Determining liquid crystal properties with ordinal networks and machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    11. Amadio, Ariel & Rey, Andrea & Legnani, Walter & Blesa, Manuel García & Bonini, Cristian & Otero, Dino, 2023. "Mathematical and informational tools for classifying blood glucose signals - a pilot study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    12. Lima, David H.S. & Aquino, Andre L.L. & Rosso, Osvaldo A. & Curado, Marilia, 2024. "Characterization of task allocation techniques in data centers based on information theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    13. Jauregui, M. & Zunino, L. & Lenzi, E.K. & Mendes, R.S. & Ribeiro, H.V., 2018. "Characterization of time series via Rényi complexity–entropy curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 74-85.
    14. Zunino, Luciano & Ribeiro, Haroldo V., 2016. "Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 679-688.
    15. Erfan Zabeh & Nicholas C. Foley & Joshua Jacobs & Jacqueline P. Gottlieb, 2023. "Beta traveling waves in monkey frontal and parietal areas encode recent reward history," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Adeeti Aggarwal & Connor Brennan & Jennifer Luo & Helen Chung & Diego Contreras & Max B. Kelz & Alex Proekt, 2022. "Visual evoked feedforward–feedback traveling waves organize neural activity across the cortical hierarchy in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Liu, Zhengli & Shang, Pengjian & Wang, Yuanyuan, 2020. "Characterization of time series through information quantifiers," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    18. Wang, Zhuo & Shang, Pengjian, 2021. "Generalized entropy plane based on multiscale weighted multivariate dispersion entropy for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    19. Carlos F Alvarez & Luis E Palafox & Leocundo Aguilar & Mauricio A Sanchez & Luis G Martinez, 2016. "Using Link Disconnection Entropy Disorder to Detect Fast Moving Nodes in MANETs," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.
    20. Yuqi Liang & Junhao Liang & Chenchen Song & Mianxin Liu & Thomas Knöpfel & Pulin Gong & Changsong Zhou, 2023. "Complexity of cortical wave patterns of the wake mouse cortex," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:171:y:2023:i:c:s0960077923003545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.