IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v159y2022ics0960077922002715.html
   My bibliography  Save this article

Sleep and cardiac signal processing using improved multivariate partial compensated transfer entropy based on non-uniform embedding

Author

Listed:
  • Gu, Danlei
  • Lin, Aijing
  • Lin, Guancen

Abstract

Based on the symbolic transfer entropy, this paper proposes an improved method to detect the nonlinear interaction of MV time series, namely the effective symbolic phase multivariate partial compensated transfer entropy (EMPcTE). It is based on embedding sequences through sequential non-uniform processes and correcting the bias of transient effects by compensated conditional entropy, eliminating influencing factors in multivariable systems, and estimating information flow from source variables to target variables. The method was validated on short-term implementations of linear stochastic and nonlinear deterministic processes and then evaluated on the Sleeping Heart Health dataset to explore the impact of interactions between electrophysiological signals on cardiovascular-related diseases caused by sleep-disordered breathing. The experimental results show that diseases with high prevalence such as angina pectoris may be related to the close information transfer between EMG and ECG.

Suggested Citation

  • Gu, Danlei & Lin, Aijing & Lin, Guancen, 2022. "Sleep and cardiac signal processing using improved multivariate partial compensated transfer entropy based on non-uniform embedding," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922002715
    DOI: 10.1016/j.chaos.2022.112061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922002715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seung Ki Baek & Woo-Sung Jung & Okyu Kwon & Hie-Tae Moon, 2005. "Transfer Entropy Analysis of the Stock Market," Papers physics/0509014, arXiv.org, revised Sep 2005.
    2. Mao, Xuegeng & Shang, Pengjian & Xu, Meng & Peng, Chung-Kang, 2020. "Measuring time series based on multiscale dispersion Lempel–Ziv complexity and dispersion entropy plane," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    3. Sukriti, & Chakraborty, Monisha & Mitra, Debjani, 2021. "Automated detection of epileptic seizures using multiscale and refined composite multiscale dispersion entropy," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Camacho, Maximo & Romeu, Andres & Ruiz-Marin, Manuel, 2021. "Symbolic transfer entropy test for causality in longitudinal data," Economic Modelling, Elsevier, vol. 94(C), pages 649-661.
    5. Mateos, Diego M. & Gómez-Ramírez, Jaime & Rosso, Osvaldo A., 2021. "Using time causal quantifiers to characterize sleep stages," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    7. Sensoy, Ahmet & Sobaci, Cihat & Sensoy, Sadri & Alali, Fatih, 2014. "Effective transfer entropy approach to information flow between exchange rates and stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 180-185.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Guancen & Lin, Aijing, 2022. "Modified multiscale sample entropy and cross-sample entropy based on horizontal visibility graph," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Kyuseong & Kim, Sehyun & Kim, Soo Yong, 2017. "Information transfer across intra/inter-structure of CDS and stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 118-126.
    2. Leonidas Sandoval Junior & Asher Mullokandov & Dror Y. Kenett, 2015. "Dependency Relations among International Stock Market Indices," JRFM, MDPI, vol. 8(2), pages 1-39, May.
    3. Banerjee, Ameet Kumar & Akhtaruzzaman, Md & Dionisio, Andreia & Almeida, Dora & Sensoy, Ahmet, 2022. "Nonlinear nexus between cryptocurrency returns and COVID-19 news sentiment," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
    4. Yi, Eojin & Cho, Yerim & Sohn, Sungbin & Ahn, Kwangwon, 2021. "After the Splits: Information Flow between Bitcoin and Bitcoin Family," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Roberta Scaramozzino & Paola Cerchiello & Tomaso Aste, 2021. "Information theoretic causality detection between financial and sentiment data," DEM Working Papers Series 202, University of Pavia, Department of Economics and Management.
    6. Scaramozzino, Roberta & Cerchiello, Paola & Aste, Tomaso, 2021. "Information theoretic causality detection between financial and sentiment data," LSE Research Online Documents on Economics 110903, London School of Economics and Political Science, LSE Library.
    7. Storhas, Dominik P. & De Mello, Lurion & Singh, Abhay Kumar, 2020. "Multiscale lead-lag relationships in oil and refined product return dynamics: A symbolic wavelet transfer entropy approach," Energy Economics, Elsevier, vol. 92(C).
    8. Nicoló Andrea Caserini & Paolo Pagnottoni, 2022. "Effective transfer entropy to measure information flows in credit markets," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 729-757, October.
    9. Emeka Nkoro & Aham Kelvin Uko, 2016. "Exchange Rate and Inflation Volatility and Stock Prices Volatility: Evidence from Nigeria, 1986-2012," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 6(6), pages 1-4.
    10. Czujack, Corinna & Flôres Junior, Renato Galvão & Ginsburgh, Victor, 1995. "On long-run price comovements between paintings and prints," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 269, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    11. Loperfido, Nicola, 2010. "A note on marginal and conditional independence," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1695-1699, December.
    12. KAMKOUM, Arnaud Cedric, 2023. "The Federal Reserve’s Response to the Global Financial Crisis and its Effects: An Interrupted Time-Series Analysis of the Impact of its Quantitative Easing Programs," Thesis Commons d7pvg, Center for Open Science.
    13. Zamani, Mehrzad, 2007. "Energy consumption and economic activities in Iran," Energy Economics, Elsevier, vol. 29(6), pages 1135-1140, November.
    14. Muhammad Shafiullah & Ravinthirakumaran Navaratnam, 2016. "Do Bangladesh and Sri Lanka Enjoy Export-Led Growth? A Comparison of Two Small South Asian Economies," South Asia Economic Journal, Institute of Policy Studies of Sri Lanka, vol. 17(1), pages 114-132, March.
    15. Alberto Fuertes & Simón Sosvilla-Rivero, 2019. "“Forecasting emerging market currencies: Are inflation expectations useful?”," IREA Working Papers 201918, University of Barcelona, Research Institute of Applied Economics, revised Oct 2019.
    16. Diana Ricciulli-Marín, 2020. "The Fiscal Cost of Conflict: Evidence from La Violencia in Colombia," Cuadernos de Historia Económica 53, Banco de la Republica de Colombia.
    17. Wesam Salah Alaloul & Muhammad Ali Musarat & Muhammad Babar Ali Rabbani & Qaiser Iqbal & Ahsen Maqsoom & Waqas Farooq, 2021. "Construction Sector Contribution to Economic Stability: Malaysian GDP Distribution," Sustainability, MDPI, vol. 13(9), pages 1-26, April.
    18. Hany Eldemerdash & Hugh Metcalf & Sara Maioli, 2014. "Twin deficits: new evidence from a developing (oil vs. non-oil) countries’ perspective," Empirical Economics, Springer, vol. 47(3), pages 825-851, November.
    19. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    20. Cantoni, Enrico & Gazzè, Ludovica & Schafer, Jerome, 2021. "Turnout in concurrent elections: Evidence from two quasi-experiments in Italy," European Journal of Political Economy, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922002715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.