IDEAS home Printed from https://ideas.repec.org/a/hin/jnijsa/091083.html
   My bibliography  Save this article

Sumudu transform fundamental properties investigations and applications

Author

Listed:
  • Fethi Bin Muhammed Belgacem
  • Ahmed Abdullatif Karaballi

Abstract

The Sumudu transform, whose fundamental properties are presented in this paper, is still not widely known, nor used. Having scale and unit-preserving properties, the Sumudu transform may be used to solve problems without resorting to a new frequency domain. In 2003, Belgacem et al have shown it to be the theoretical dual to the Laplace transform, and hence ought to rival it in problem solving. Here, using the Laplace-Sumudu duality (LSD), we avail the reader with a complex formulation for the inverse Sumudu transform. Furthermore, we generalize all existing Sumudu differentiation, integration, and convolution theorems in the existing literature. We also generalize all existing Sumudu shifting theorems, and introduce new results and recurrence results, in this regard. Moreover, we use the Sumudu shift theorems to introduce a paradigm shift into the thinking of transform usage, with respect to solving differential equations, that may be unique to this transform due to its unit-preserving properties. Finally, we provide a large and more comprehensive list of Sumudu transforms of functions than is available in the literature.

Suggested Citation

  • Fethi Bin Muhammed Belgacem & Ahmed Abdullatif Karaballi, 2006. "Sumudu transform fundamental properties investigations and applications," International Journal of Stochastic Analysis, Hindawi, vol. 2006, pages 1-23, May.
  • Handle: RePEc:hin:jnijsa:091083
    DOI: 10.1155/JAMSA/2006/91083
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJSA/2006/091083.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJSA/2006/091083.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/JAMSA/2006/91083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Srivastava, H.M. & Dubey, V.P. & Kumar, R. & Singh, J. & Kumar, D. & Baleanu, D., 2020. "An efficient computational approach for a fractional-order biological population model with carrying capacity," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Dubey, Ved Prakash & Dubey, Sarvesh & Kumar, Devendra & Singh, Jagdev, 2021. "A computational study of fractional model of atmospheric dynamics of carbon dioxide gas," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Akgül, Esra Karatas & Akgül, Ali & Yavuz, Mehmet, 2021. "New Illustrative Applications of Integral Transforms to Financial Models with Different Fractional Derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Bokhari, Ahmed & Belgacem, Rachid & Kumar, Sunil & Baleanu, Dumitru & Djilali, Salih, 2022. "Projectile motion using three parameter Mittag-Leffler function calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 195(C), pages 22-30.
    5. Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "An efficient analytical scheme with convergence analysis for computational study of local fractional Schrödinger equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 296-318.
    6. Viacheslav Glinskikh & Oleg Nechaev & Igor Mikhaylov & Marina Nikitenko & Kirill Danilovskiy, 2024. "Transient Electromagnetic Monitoring of Permafrost: Mathematical Modeling Based on Sumudu Integral Transform and Artificial Neural Networks," Mathematics, MDPI, vol. 12(4), pages 1-24, February.
    7. Nur Alam & Fethi Bin Muhammad Belgacem, 2016. "Microtubules Nonlinear Models Dynamics Investigations through the exp(−Φ(ξ))-Expansion Method Implementation," Mathematics, MDPI, vol. 4(1), pages 1-13, February.
    8. Mamta Kapoor & Nehad Ali Shah & Salman Saleem & Wajaree Weera, 2022. "An Analytical Approach for Fractional Hyperbolic Telegraph Equation Using Shehu Transform in One, Two and Three Dimensions," Mathematics, MDPI, vol. 10(12), pages 1-26, June.
    9. Liaqat, Muhammad Imran & Akgül, Ali, 2022. "A novel approach for solving linear and nonlinear time-fractional Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "Forecasting the behavior of fractional order Bloch equations appearing in NMR flow via a hybrid computational technique," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnijsa:091083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.