IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v114y2018icp516-535.html
   My bibliography  Save this article

Fractional derivatives with no-index law property: Application to chaos and statistics

Author

Listed:
  • Atangana, Abdon
  • Gómez-Aguilar, J.F.

Abstract

Recently fractional differential operators with non-index law properties have being recognized to have brought new weapons to accurately model real world problems particularly those with non-Markovian processes. This present paper has two double aims, the first was to prove the inadequacy and failure of index law fractional calculus and secondly to show the application of fractional differential operators with no index law properties to statistic and dynamical systems. To achieve this, we presented the historical construction of the concept of fractional differential operators from Leibniz to date. Using a matrix based on the fractional differential operators, we proved that, fractional operators obeying index law cannot model real world problems taking place in two states, more precisely they cannot describe phenomena taking place beyond their boundaries, as they are scaling invariant, more precisely our results show that, mathematical models based on these differential operators are not able to describe the inverse memory, meaning the full history of a physical problem cannot be described accurately using these derivatives with index law properties. On the other hand, we proved that, differential operators with no index-law properties are scaling variant, thus can describe situations taking place in different states and are able to localize the frontiers between two states. We present the renewal process properties included in differential equation build out of the Atangana–Baleanu fractional derivative and counting process, which is connected to its inter-arrival time distribution Mittag–Leffler distribution which is the kernel of these derivatives. We presented the connection of each derivative to a statistical family, for instance Riemann–Liouville–Caputo derivatives are connected to the Pareto statistic, which has no well-defined average when alpha is less than 1 corresponding to the interval where fractional operators mostly defined. We established new properties and theorem for the Atangana–Baleanu derivative of an analytic function, in particular we proved that, they are convolution of the Mittag–Leffler function with the Riemann–Liouville–Caputo derivatives. To see the accuracy of the non-index law derivative to in modeling real chaotic problems, 4 examples were considered, including the nine-term 3-D novel chaotic system, King Cobra chaotic system, the Ikeda delay system and chaotic chameleon system. The numerical simulations show very interesting and novel attractors. The king cobra system with the Atangana–Baleanu presented a very novel attractor where at the earlier time we observed a random walk and latter time we observed the real sharp of the cobra. The Ikeda model with Atangana–Baleanu presented different attractors for each value of fractional order, in particular we obtain a square and circular explosions. The results obtained in this paper show that, the future of modeling real world problem relies on fractional differential operators with non-index law property. Our numerical results showed that, to not model physical problems with fractional differential operators with non-singular kernel and imposing index law in fractional calculus is rightfully living with closed eyes without ever taking a risk to open them.

Suggested Citation

  • Atangana, Abdon & Gómez-Aguilar, J.F., 2018. "Fractional derivatives with no-index law property: Application to chaos and statistics," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 516-535.
  • Handle: RePEc:eee:chsofr:v:114:y:2018:i:c:p:516-535
    DOI: 10.1016/j.chaos.2018.07.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918304156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.07.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atangana, Abdon & Gómez-Aguilar, J.F., 2017. "A new derivative with normal distribution kernel: Theory, methods and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 1-14.
    2. Weron, Karina & Kotulski, Marcin, 1996. "On the Cole-Cole relaxation function and related Mittag-Leffler distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 232(1), pages 180-188.
    3. R. Pillai, 1990. "On Mittag-Leffler functions and related distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(1), pages 157-161, March.
    4. Atangana, Abdon, 2018. "Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 688-706.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asifa, & Kumam, Poom & Tassaddiq, Asifa & Watthayu, Wiboonsak & Shah, Zahir & Anwar, Talha, 2022. "Modeling and simulation based investigation of unsteady MHD radiative flow of rate type fluid; a comparative fractional analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 486-507.
    2. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    3. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    4. Al-khedhairi, A. & Elsadany, A.A. & Elsonbaty, A., 2019. "Modelling immune systems based on Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 25-39.
    5. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    6. Kozubowski, Tomasz J. & Meerschaert, Mark M., 2009. "A bivariate infinitely divisible distribution with exponential and Mittag-Leffler marginals," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1596-1601, July.
    7. Owolabi, Kolade M. & Pindza, Edson, 2019. "Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 146-157.
    8. Yin, Baoli & Liu, Yang & Li, Hong, 2020. "A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    9. Bandaliyev, R.A. & Ibayev, E.A. & Omarova, K.K., 2021. "Investigation of fractional order differential equation for boundary functional of a semi-Markov random walk process with negative drift and positive jumps," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    11. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    12. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    13. Chatibi, Y. & El Kinani, E.H. & Ouhadan, A., 2019. "Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 117-121.
    14. Christoph, Gerd & Schreiber, Karina, 2000. "Scaled Sibuya distribution and discrete self-decomposability," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 181-187, June.
    15. Zhang, Zhehao, 2018. "Renewal sums under mixtures of exponentials," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 281-301.
    16. Emad-Eldin Aly & Nadjib Bouzar, 2000. "On Geometric Infinite Divisibility and Stability," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(4), pages 790-799, December.
    17. Levy, Edmond, 2021. "On the density for sums of independent Mittag-Leffler variates with common order," Statistics & Probability Letters, Elsevier, vol. 179(C).
    18. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    19. Kozubowski, Tomasz J., 2005. "A note on self-decomposability of stable process subordinated to self-decomposable subordinator," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 89-91, August.
    20. Aliyu, Aliyu Isa & Inc, Mustafa & Yusuf, Abdullahi & Baleanu, Dumitru, 2018. "A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 268-277.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:114:y:2018:i:c:p:516-535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.