IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp498-506.html
   My bibliography  Save this article

Stability analysis for a single degree of freedom fractional oscillator

Author

Listed:
  • Pang, Denghao
  • Jiang, Wei
  • Liu, Song
  • Jun, Du

Abstract

This paper investigates the analytical solution, asymptotical stability and BIBO stability of a single degree of freedom (SDOF) fractional oscillator. By applying the Laplace transform, an analytical solution is provided in terms of Prabhakar’s function. With the decomposition of state–space, an equivalent incommensurate fractional differential system is obtained. New criteria on the asymptotical stability and BIBO stability are derived based on the distribution of the characteristic roots and the poles, respectively. An example under three diverse cases is presented to illustrate the validity and flexibility of our main results and the memory and hereditary effects of the fractional orders.

Suggested Citation

  • Pang, Denghao & Jiang, Wei & Liu, Song & Jun, Du, 2019. "Stability analysis for a single degree of freedom fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 498-506.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:498-506
    DOI: 10.1016/j.physa.2019.02.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119301694
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.02.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xian-Feng Zhou & Song Liu & Wei Jiang, 2013. "Complete Controllability of Impulsive Fractional Linear Time-Invariant Systems with Delay," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-7, July.
    2. Li, Mengmeng & Wang, JinRong, 2018. "Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 254-265.
    3. Jajarmi, Amin & Baleanu, Dumitru, 2018. "A new fractional analysis on the interaction of HIV with CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 221-229.
    4. Atangana, Abdon & Gómez-Aguilar, J.F., 2017. "A new derivative with normal distribution kernel: Theory, methods and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 1-14.
    5. Liu, Shuxin & Yu, Yongguang & Zhang, Shuo & Zhang, Yuting, 2018. "Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 845-854.
    6. Zhang, Yan-Jie & Liu, Song & Yang, Ran & Tan, Ying-Ying & Li, Xiaoyan, 2019. "Global synchronization of fractional coupled networks with discrete and distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 830-837.
    7. Hai Zhang & Renyu Ye & Song Liu & Jinde Cao & Ahmad Alsaedi & Xiaodi Li, 2018. "LMI-based approach to stability analysis for fractional-order neural networks with discrete and distributed delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(3), pages 537-545, February.
    8. Deng, W.H. & Li, C.P., 2005. "Chaos synchronization of the fractional Lü system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 61-72.
    9. Atangana, Abdon & Gómez-Aguilar, J.F., 2018. "Fractional derivatives with no-index law property: Application to chaos and statistics," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 516-535.
    10. Zhang, Hai & Ye, Miaolin & Ye, Renyu & Cao, Jinde, 2018. "Synchronization stability of Riemann–Liouville fractional delay-coupled complex neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 155-165.
    11. Radwan, A.G. & Soliman, A.M. & Elwakil, A.S. & Sedeek, A., 2009. "On the stability of linear systems with fractional-order elements," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2317-2328.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Guo, Ying & Xiao, Qimei & Yuan, Shuai, 2019. "Influence of multiple time delays on bifurcation of fractional-order neural networks," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 565-582.
    2. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    3. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    4. Khennaoui, Amina-Aicha & Ouannas, Adel & Bendoukha, Samir & Grassi, Giuseppe & Lozi, René Pierre & Pham, Viet-Thanh, 2019. "On fractional–order discrete–time systems: Chaos, stabilization and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 150-162.
    5. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    6. Ma, Chaoqun & Ma, Zonggang & Xiao, Shisong, 2019. "A closed-form pricing formula for vulnerable European options under stochastic yield spreads and interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 59-68.
    7. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    8. Du, Feifei & Lu, Jun-Guo, 2020. "Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    9. Shah, Syed Azhar Ali & Khan, Muhammad Altaf & Farooq, Muhammad & Ullah, Saif & Alzahrani, Ebraheem O., 2020. "A fractional order model for Hepatitis B virus with treatment via Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    10. Xu, Wei & Zhu, Song & Fang, Xiaoyu & Wang, Wei, 2019. "Adaptive anti-synchronization of memristor-based complex-valued neural networks with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    11. Dubey, Ved Prakash & Dubey, Sarvesh & Kumar, Devendra & Singh, Jagdev, 2021. "A computational study of fractional model of atmospheric dynamics of carbon dioxide gas," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Qureshi, Sania & Bonyah, Ebenezer & Shaikh, Asif Ali, 2019. "Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    13. Al-khedhairi, A. & Elsadany, A.A. & Elsonbaty, A., 2019. "Modelling immune systems based on Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 25-39.
    14. Kumar, Sachin & Pandey, Prashant, 2020. "A Legendre spectral finite difference method for the solution of non-linear space-time fractional Burger’s–Huxley and reaction-diffusion equation with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    15. Owolabi, Kolade M. & Pindza, Edson, 2019. "Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 146-157.
    16. Zhang, Hai & Cheng, Jingshun & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2021. "Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays★," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Kui Liu & Michal Fečkan & D. O’Regan & JinRong Wang, 2019. "Hyers–Ulam Stability and Existence of Solutions for Differential Equations with Caputo–Fabrizio Fractional Derivative," Mathematics, MDPI, vol. 7(4), pages 1-14, April.
    19. Pritam, Kocherlakota Satya & Sugandha, & Mathur, Trilok & Agarwal, Shivi, 2021. "Underlying dynamics of crime transmission with memory," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    20. Li, Changpin & Yan, Jianping, 2007. "The synchronization of three fractional differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 751-757.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:498-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.