IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/934060.html
   My bibliography  Save this article

Homotopy Perturbation Method for Fractional Gas Dynamics Equation Using Sumudu Transform

Author

Listed:
  • Jagdev Singh
  • Devendra Kumar
  • A. Kılıçman

Abstract

A user friendly algorithm based on new homotopy perturbation Sumudu transform method (HPSTM) is proposed to solve nonlinear fractional gas dynamics equation. The fractional derivative is considered in the Caputo sense. Further, the same problem is solved by Adomian decomposition method (ADM). The results obtained by the two methods are in agreement and hence this technique may be considered an alternative and efficient method for finding approximate solutions of both linear and nonlinear fractional differential equations. The HPSTM is a combined form of Sumudu transform, homotopy perturbation method, and He’s polynomials. The nonlinear terms can be easily handled by the use of He’s polynomials. The numerical solutions obtained by the proposed method show that the approach is easy to implement and computationally very attractive.

Suggested Citation

  • Jagdev Singh & Devendra Kumar & A. Kılıçman, 2013. "Homotopy Perturbation Method for Fractional Gas Dynamics Equation Using Sumudu Transform," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, February.
  • Handle: RePEc:hin:jnlaaa:934060
    DOI: 10.1155/2013/934060
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2013/934060.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2013/934060.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/934060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khirsariya, Sagar R. & Chauhan, Jignesh P. & Rao, Snehal B., 2024. "A robust computational analysis of residual power series involving general transform to solve fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 168-186.
    2. Dubey, Ved Prakash & Dubey, Sarvesh & Kumar, Devendra & Singh, Jagdev, 2021. "A computational study of fractional model of atmospheric dynamics of carbon dioxide gas," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Goswami, Amit & Singh, Jagdev & Kumar, Devendra & Sushila,, 2019. "An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 563-575.
    4. Korkmaz, Alper, 2017. "Exact solutions of space-time fractional EW and modified EW equations," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 132-138.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:934060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.