IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i18p2307-d638587.html
   My bibliography  Save this article

Nonlinear Combinational Dynamic Transmission Rate Model and Its Application in Global COVID-19 Epidemic Prediction and Analysis

Author

Listed:
  • Xiaojin Xie

    (School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China)

  • Kangyang Luo

    (School of Data Science and Engineering, East China Normal University, Shanghai 200062, China)

  • Zhixiang Yin

    (School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China)

  • Guoqiang Wang

    (School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China)

Abstract

The outbreak of coronavirus disease 2019 (COVID-19) has caused a global disaster, seriously endangering human health and the stability of social order. The purpose of this study is to construct a nonlinear combinational dynamic transmission rate model with automatic selection based on forecasting effective measure (FEM) and support vector regression (SVR) to overcome the shortcomings of the difficulty in accurately estimating the basic infection number R 0 and the low accuracy of single model predictions. We apply the model to analyze and predict the COVID-19 outbreak in different countries. First, the discrete values of the dynamic transmission rate are calculated. Second, the prediction abilities of all single models are comprehensively considered, and the best sliding window period is derived. Then, based on FEM, the optimal sub-model is selected, and the prediction results are nonlinearly combined. Finally, a nonlinear combinational dynamic transmission rate model is developed to analyze and predict the COVID-19 epidemic in the United States, Canada, Germany, Italy, France, Spain, South Korea, and Iran in the global pandemic. The experimental results show an the out-of-sample forecasting average error rate lower than 10.07% was achieved by our model, the prediction of COVID-19 epidemic inflection points in most countries shows good agreement with the real data. In addition, our model has good anti-noise ability and stability when dealing with data fluctuations.

Suggested Citation

  • Xiaojin Xie & Kangyang Luo & Zhixiang Yin & Guoqiang Wang, 2021. "Nonlinear Combinational Dynamic Transmission Rate Model and Its Application in Global COVID-19 Epidemic Prediction and Analysis," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2307-:d:638587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/18/2307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/18/2307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    2. Peng, Yaohao & Nagata, Mateus Hiro, 2020. "An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Mahajan, Ashutosh & Sivadas, Namitha A & Solanki, Ravi, 2020. "An epidemic model SIPHERD and its application for prediction of the spread of COVID-19 infection in India," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Parbat, Debanjan & Chakraborty, Monisha, 2020. "A python based support vector regression model for prediction of COVID19 cases in India," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Zeroual, Abdelhafid & Harrou, Fouzi & Dairi, Abdelkader & Sun, Ying, 2020. "Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Junaid Iqbal & Ullah, Farman & Lee, Sungchang, 2022. "Attention based parameter estimation and states forecasting of COVID-19 pandemic using modified SIQRD Model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    2. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    4. Kumar, Anand & Priya, Bhawna & Srivastava, Samir K., 2021. "Response to the COVID-19: Understanding implications of government lockdown policies," Journal of Policy Modeling, Elsevier, vol. 43(1), pages 76-94.
    5. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    6. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
    7. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    8. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    9. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    10. Di Wang & Sha Li & Xiaojin Fu, 2024. "Short-Term Power Load Forecasting Based on Secondary Cleaning and CNN-BILSTM-Attention," Energies, MDPI, vol. 17(16), pages 1-23, August.
    11. Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.
    12. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
    13. Wang, Deyun & Yue, Chenqiang & ElAmraoui, Adnen, 2021. "Multi-step-ahead electricity load forecasting using a novel hybrid architecture with decomposition-based error correction strategy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    15. Qiangqiang Cheng & Yiqi Yan & Shichao Liu & Chunsheng Yang & Hicham Chaoui & Mohamad Alzayed, 2020. "Particle Filter-Based Electricity Load Prediction for Grid-Connected Microgrid Day-Ahead Scheduling," Energies, MDPI, vol. 13(24), pages 1-15, December.
    16. Huang, Chiou-Jye & Shen, Yamin & Kuo, Ping-Huan & Chen, Yung-Hsiang, 2022. "Novel spatiotemporal feature extraction parallel deep neural network for forecasting confirmed cases of coronavirus disease 2019," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    17. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
    18. Zhao, Xueyuan & Gao, Weijun & Qian, Fanyue & Ge, Jian, 2021. "Electricity cost comparison of dynamic pricing model based on load forecasting in home energy management system," Energy, Elsevier, vol. 229(C).
    19. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    20. Jian Yang & Xin Zhao & Haikun Wei & Kanjian Zhang, 2019. "Sample Selection Based on Active Learning for Short-Term Wind Speed Prediction," Energies, MDPI, vol. 12(3), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2307-:d:638587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.