IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920304537.html
   My bibliography  Save this article

Partial derivative Nonlinear Global Pandemic Machine Learning prediction of COVID 19

Author

Listed:
  • Kavadi, Durga Prasad
  • Patan, Rizwan
  • Ramachandran, Manikandan
  • Gandomi, Amir H.

Abstract

The recent worldwide outbreak of the novel coronavirus disease 2019 (COVID-19) opened new challenges for the research community. Machine learning (ML)-guided methods can be useful for feature prediction, involved risk, and the causes of an analogous epidemic. Such predictions can be useful for managing and intercepting the outbreak of such diseases. The foremost advantages of applying ML methods are handling a wide variety of data and easy identification of trends and patterns of an undetermined nature.In this study, we propose a partial derivative regression and nonlinear machine learning (PDR-NML) method for global pandemic prediction of COVID-19. We used a Progressive Partial Derivative Linear Regression model to search for the best parameters in the dataset in a computationally efficient manner. Next, a Nonlinear Global Pandemic Machine Learning model was applied to the normalized features for making accurate predictions. The results show that the proposed ML method outperformed state-of-the-art methods in the Indian population and can also be a convenient tool for making predictions for other countries.

Suggested Citation

  • Kavadi, Durga Prasad & Patan, Rizwan & Ramachandran, Manikandan & Gandomi, Amir H., 2020. "Partial derivative Nonlinear Global Pandemic Machine Learning prediction of COVID 19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304537
    DOI: 10.1016/j.chaos.2020.110056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rasheed, Jawad & Jamil, Akhtar & Hameed, Alaa Ali & Aftab, Usman & Aftab, Javaria & Shah, Syed Attique & Draheim, Dirk, 2020. "A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Amir Masoud Rahmani & Seyedeh Yasaman Hosseini Mirmahaleh, 2024. "An Intelligent Algorithm to Predict GDP Rate and Find a Relationship Between COVID-19 Outbreak and Economic Downturn," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1001-1020, March.
    4. Farhana Tazmim Pinki & Md Abdul Awal & Khondoker Mirazul Mumenin & Md. Shahadat Hossain & Jabed Al Faysal & Rajib Rana & Latifah Almuqren & Amel Ksibi & Md Abdus Samad, 2023. "HGSOXGB: Hunger-Games-Search-Optimization-Based Framework to Predict the Need for ICU Admission for COVID-19 Patients Using eXtreme Gradient Boosting," Mathematics, MDPI, vol. 11(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    2. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    3. Emrah Gecili & Assem Ziady & Rhonda D Szczesniak, 2021. "Forecasting COVID-19 confirmed cases, deaths and recoveries: Revisiting established time series modeling through novel applications for the USA and Italy," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-11, January.
    4. Camacho, Carmen & Vasilakis, Chrysovalantis, 2023. "Transmissible Diseases, Vaccination and Inequality," IZA Discussion Papers 16504, Institute of Labor Economics (IZA).
    5. Paolo Berta & Paolo Paruolo & Stefano Verzillo & Pietro Giorgio Lovaglio, 2020. "A bivariate prediction approach for adapting the health care system response to the spread of COVID-19," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    6. Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
    7. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    8. Konstantinos Demertzis & Dimitrios Tsiotas & Lykourgos Magafas, 2020. "Modeling and Forecasting the COVID-19 Temporal Spread in Greece: An Exploratory Approach Based on Complex Network Defined Splines," IJERPH, MDPI, vol. 17(13), pages 1-17, June.
    9. Khalid A. Kheirallah & Belal Alsinglawi & Abdallah Alzoubi & Motasem N. Saidan & Omar Mubin & Mohammed S. Alorjani & Fawaz Mzayek, 2020. "The Effect of Strict State Measures on the Epidemiologic Curve of COVID-19 Infection in the Context of a Developing Country: A Simulation from Jordan," IJERPH, MDPI, vol. 17(18), pages 1-11, September.
    10. Michał Wieczorek & Jakub Siłka & Dawid Połap & Marcin Woźniak & Robertas Damaševičius, 2020. "Real-time neural network based predictor for cov19 virus spread," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-18, December.
    11. Jordan J Bird & Chloe M Barnes & Cristiano Premebida & Anikó Ekárt & Diego R Faria, 2020. "Country-level pandemic risk and preparedness classification based on COVID-19 data: A machine learning approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-20, October.
    12. Petropoulos, Fotios & Makridakis, Spyros & Stylianou, Neophytos, 2022. "COVID-19: Forecasting confirmed cases and deaths with a simple time series model," International Journal of Forecasting, Elsevier, vol. 38(2), pages 439-452.
    13. Aman Ullah & Tao Wang & Weixin Yao, 2022. "Nonlinear modal regression for dependent data with application for predicting COVID‐19," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1424-1453, July.
    14. Giacomo De Nicola & Marc Schneble & Göran Kauermann & Ursula Berger, 2022. "Regional now- and forecasting for data reported with delay: toward surveillance of COVID-19 infections," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 407-426, September.
    15. Aman Khakharia & Vruddhi Shah & Sankalp Jain & Jash Shah & Amanshu Tiwari & Prathamesh Daphal & Mahesh Warang & Ninad Mehendale, 2021. "Outbreak Prediction of COVID-19 for Dense and Populated Countries Using Machine Learning," Annals of Data Science, Springer, vol. 8(1), pages 1-19, March.
    16. Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2020. "The Efficiency Gap," Papers 2010.14146, arXiv.org, revised Sep 2022.
    17. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Wieczorek, Michał & Siłka, Jakub & Woźniak, Marcin, 2020. "Neural network powered COVID-19 spread forecasting model," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    20. Li-Pang Chen & Qihuang Zhang & Grace Y Yi & Wenqing He, 2021. "Model-based forecasting for Canadian COVID-19 data," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.