IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920304689.html
   My bibliography  Save this article

Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique

Author

Listed:
  • Altan, Aytaç
  • Karasu, Seçkin

Abstract

The novel coronavirus disease 2019 (COVID-19), detected in Wuhan City, Hubei Province, China in late December 2019, is rapidly spreading and affecting all countries in the world. Real-time reverse transcription-polymerase chain reaction (RT-PCR) test has been described by the World Health Organization (WHO) as the standard test method for the diagnosis of the disease. However, considering that the results of this test are obtained between a few hours and two days, it is very important to apply another diagnostic method as an alternative to this test. The fact that RT-PCR test kits are limited in number, the test results are obtained in a long time, and the high probability of healthcare personnel becoming infected with the disease during the test, necessitates the use of other diagnostic methods as an alternative to these test kits. In this study, a hybrid model consisting of two-dimensional (2D) curvelet transformation, chaotic salp swarm algorithm (CSSA) and deep learning technique is developed in order to determine the patient infected with coronavirus pneumonia from X-ray images. In the proposed model, 2D Curvelet transformation is applied to the images obtained from the patient's chest X-ray radiographs and a feature matrix is formed using the obtained coefficients. The coefficients in the feature matrix are optimized with the help of the CSSA and COVID-19 disease is diagnosed by the EfficientNet-B0 model, which is one of the deep learning methods. Experimental results show that the proposed hybrid model can diagnose COVID-19 disease with high accuracy from chest X-ray images.

Suggested Citation

  • Altan, Aytaç & Karasu, Seçkin, 2020. "Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920304689
    DOI: 10.1016/j.chaos.2020.110071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yudong Zhang & Shuihua Wang & Genlin Ji, 2015. "A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-38, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Korzeń & Maciej Kruszyna, 2023. "Modified Ant Colony Optimization as a Means for Evaluating the Variants of the City Railway Underground Section," IJERPH, MDPI, vol. 20(6), pages 1-15, March.
    2. Mohammad Soleimani Amiri & Rizauddin Ramli & Ahmad Barari, 2023. "Optimally Initialized Model Reference Adaptive Controller of Wearable Lower Limb Rehabilitation Exoskeleton," Mathematics, MDPI, vol. 11(7), pages 1-14, March.
    3. Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    4. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    5. Grzegorz Sroka & Mariusz Oszust, 2021. "Approximation of the Constant in a Markov-Type Inequality on a Simplex Using Meta-Heuristics," Mathematics, MDPI, vol. 9(3), pages 1-10, January.
    6. Genbao Liu & Tengfei Zhao & Hong Yan & Han Wu & Fuming Wang, 2022. "Evaluation of Urban Green Building Design Schemes to Achieve Sustainability Based on the Projection Pursuit Model Optimized by the Atomic Orbital Search," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    7. Mojgan Fayyazi & Paramjotsingh Sardar & Sumit Infent Thomas & Roonak Daghigh & Ali Jamali & Thomas Esch & Hans Kemper & Reza Langari & Hamid Khayyam, 2023. "Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles," Sustainability, MDPI, vol. 15(6), pages 1-38, March.
    8. Yanzheng Zhu & Yangbo Chen & Yanjun Zhao & Feng Zhou & Shichao Xu, 2023. "Application and Research of Liuxihe Model in the Simulation of Inflow Flood at Zaoshi Reservoir," Sustainability, MDPI, vol. 15(13), pages 1-14, June.
    9. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    10. Chandrakant Nikam, Keval & Jathar, Laxmikant & Shelare, Sagar Dnyaneshwar & Shahapurkar, Kiran & Dambhare, Sunil & Soudagar, Manzoore Elahi M. & Mubarak, Nabisab Mujawar & Ahamad, Tansir & Kalam, M.A., 2023. "Parametric analysis and optimization of 660 MW supercritical power plant," Energy, Elsevier, vol. 280(C).
    11. Eid, Heba F. & Cuevas, Erik & Mansour, Romany F., 2024. "Autonomous bonobo optimization algorithm for power allocation in wireless networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 294-310.
    12. Xin Peng & Hui Chen & Cong Guan, 2023. "Energy Management Optimization of Fuel Cell Hybrid Ship Based on Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 16(3), pages 1-15, January.
    13. Wensheng Li & Fanke Yang & Liqiang Zhong & Hao Wu & Xiangyuan Jiang & Andrei V. Chukalin, 2023. "Attitude Control of UAVs with Search Optimization and Disturbance Rejection Strategies," Mathematics, MDPI, vol. 11(17), pages 1-16, September.
    14. Olukorede Tijani Adenuga & Senthil Krishnamurthy, 2023. "Economic Power Dispatch of a Grid-Tied Photovoltaic-Based Energy Management System: Co-Optimization Approach," Mathematics, MDPI, vol. 11(15), pages 1-22, July.
    15. Wael Korani & Malek Mouhoub, 2021. "Review on Nature-Inspired Algorithms," SN Operations Research Forum, Springer, vol. 2(3), pages 1-26, September.
    16. Cui, Huixia & Chen, Xiangyong & Guo, Ming & Jiao, Yang & Cao, Jinde & Qiu, Jianlong, 2023. "A distribution center location optimization model based on minimizing operating costs under uncertain demand with logistics node capacity scalability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    17. Qian, Jing & Sun, Xiangyu & Zhong, Xiaohui & Zeng, Jiajun & Xu, Fei & Zhou, Teng & Shi, Kezhong & Li, Qingan, 2024. "Multi-objective optimization design of the wind-to-heat system blades based on the Particle Swarm Optimization algorithm," Applied Energy, Elsevier, vol. 355(C).
    18. Perera, A.T.D. & Soga, Kenichi & Xu, Yujie & Nico, Peter S. & Hong, Tianzhen, 2023. "Enhancing flexibility for climate change using seasonal energy storage (aquifer thermal energy storage) in distributed energy systems," Applied Energy, Elsevier, vol. 340(C).
    19. Zaiyu Gu & Guojiang Xiong & Xiaofan Fu, 2023. "Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review," Sustainability, MDPI, vol. 15(4), pages 1-45, February.
    20. Tri-Hai Nguyen & Luong Vuong Nguyen & Jason J. Jung & Israel Edem Agbehadji & Samuel Ofori Frimpong & Richard C. Millham, 2020. "Bio-Inspired Approaches for Smart Energy Management: State of the Art and Challenges," Sustainability, MDPI, vol. 12(20), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920304689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.