IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924009494.html
   My bibliography  Save this article

Fractional-order heterogeneous neuron network based on coupled locally-active memristors and its application in image encryption and hiding

Author

Listed:
  • Ding, Dawei
  • Jin, Fan
  • Zhang, Hongwei
  • Yang, Zongli
  • Chen, Siqi
  • Zhu, Haifei
  • Xu, Xinyue
  • Liu, Xiang

Abstract

Synaptic crosstalk significantly influences neural firing in the brain. Locally-active memristors can effectively emulate neural network synapses and have a significant importance in neural network research. This paper designs a tristable locally-active memristive model and presents a novel fractional-order (FO) heterogeneous neuron network. This neural network consists of Hindmarsh-Rose (HR) neuron and FitzHugh-Nagumo (FHN) neuron, which are connected by coupling FO locally-active memristors. The research found that changes in the order of different dimensions have a significant effect on the neural network firing through the three-parameter bifurcation diagram. Moreover, it is found that the locally-active memristor as a synapse can affect the coexistence firing behavior of the network. The complex dynamics have been studied numerically by using phase diagrams, Lyapunov exponent spectrum, bifurcation diagram and extreme multistability can be found. In particular, the system can generate a complex bursting behavior in the presence of an external current. In order to verify the accuracy of the simulation, the phase diagram of FO heterogeneous neuron network is implemented by STM32 microcontroller, and results of the experiments are in great agreement with results of the numerical simulations. Finally, an image encryption and hiding method based on FO heterogeneous neuron network and discrete wavelet transform (DWT) is proposed. The experimental results demonstrate that the encryption and hiding scheme has excellent security and strong robustness.

Suggested Citation

  • Ding, Dawei & Jin, Fan & Zhang, Hongwei & Yang, Zongli & Chen, Siqi & Zhu, Haifei & Xu, Xinyue & Liu, Xiang, 2024. "Fractional-order heterogeneous neuron network based on coupled locally-active memristors and its application in image encryption and hiding," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009494
    DOI: 10.1016/j.chaos.2024.115397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924009494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.