IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v155y2022ics0960077921011139.html
   My bibliography  Save this article

Discrete hybrid Izhikevich neuron model: Nodal and network behaviours considering electromagnetic flux coupling

Author

Listed:
  • Muni, Sishu Shankar
  • Rajagopal, Karthikeyan
  • Karthikeyan, Anitha
  • Arun, Sundaram

Abstract

We analyse the dynamics of the improved discretised version of the well known Izhikevich neuron model under the action of external electromagnetic field. It is found that the improved three dimensional IZH map shows rich dynamics. With the variation of the electromagnetic field, period-doubling route to chaos in a repeating fashion is observed from the bifurcation diagram. Even the forward and backward continuation bifurcation diagram which do not completely overlap suggests that there is multistability in the system. The phenomenon of bistability (coexistence of periodic and chaotic attractors) is observed. The presence of periodic and chaotic attractor is aided by the maximal Lyapunov exponent diagram. The Lyapunov phase diagram of electromagnetic field and synapses current shows a large parameter region of chaotic and periodic behaviours with the presence of unbounded regions as well. The IZH map shows a plethora of spiking and bursting patterns such as mixed-mode patterns, tonic spiking, phasic spiking, steady spikes, regular spikes, spike bursting, periodic bursting, phasic bursting, chaotic firing etc with the variation of electromagnetic coupling strength and the synapses current. We also investigate the presence of chimera states in a ring-star, ring, star networks of IZH map neurons. Chimera states are found in the case of ring-star and ring network while synchronised clusters were found in the case of star network and are aided by the spatiotemporal plots, space-time plot, recurrence plots. The rich dynamics shown by the discretised IZH map makes it a promising research model to study about neurodynamics.

Suggested Citation

  • Muni, Sishu Shankar & Rajagopal, Karthikeyan & Karthikeyan, Anitha & Arun, Sundaram, 2022. "Discrete hybrid Izhikevich neuron model: Nodal and network behaviours considering electromagnetic flux coupling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921011139
    DOI: 10.1016/j.chaos.2021.111759
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921011139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kafraj, Mohadeseh Shafiei & Parastesh, Fatemeh & Jafari, Sajad, 2020. "Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    2. Mohadeseh Shafiei & Fatemeh Parastesh & Mahdi Jalili & Sajad Jafari & Matjaž Perc & Mitja Slavinec, 2019. "Effects of partial time delays on synchronization patterns in Izhikevich neuronal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(2), pages 1-7, February.
    3. Shepelev, I.A. & Bukh, A.V. & Muni, S.S. & Anishchenko, V.S., 2020. "Role of solitary states in forming spatiotemporal patterns in a 2D lattice of van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    4. Khaleghi, Leyla & Panahi, Shirin & Chowdhury, Sayantan Nag & Bogomolov, Sergey & Ghosh, Dibakar & Jafari, Sajad, 2019. "Chimera states in a ring of map-based neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Tao & Mou, Jun & Banerjee, Santo & Cao, Yinghong, 2023. "Analysis of the functional behavior of fractional-order discrete neuron under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Guo, Yitong & Xie, Ying & Ma, Jun, 2023. "Nonlinear responses in a neural network under spatial electromagnetic radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    3. Lai, Qiang & Yang, Liang, 2023. "Discrete memristor applied to construct neural networks with homogeneous and heterogeneous coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Hu, Xueyan & Ding, Qianming & Wu, Yong & Huang, Weifang & Yang, Lijian & Jia, Ya, 2024. "Dynamical rewiring promotes synchronization in memristive FitzHugh-Nagumo neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    5. Min, Fuhong & Zhu, Jie & Cheng, Yizi & Xu, Yeyin, 2024. "Dynamical analysis of a tabu learning neuron through the discrete implicit mapping method," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Smidtaite, Rasa & Ragulskis, Minvydas, 2024. "Finite-time divergence in Chialvo hyperneuron model of nilpotent matrices," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    7. Fateev, I. & Polezhaev, A., 2024. "Chimera states in a lattice of superdiffusively coupled neurons," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Weiping & He, Chang & Wang, Zhen & Hramov, Alexander & Fan, Denggui & Yuan, Manman & Luo, Xiong & Kurths, Jürgen, 2021. "Dynamic analysis of synaptic loss and synaptic compensation in the process of associative memory ability decline in Alzheimer’s disease," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    2. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Lu, Lulu & Ge, Mengyan & Xu, Ying & Jia, Ya, 2019. "Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh–Nagumo model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Fengling Jia & Peiyan He & Lixin Yang, 2024. "A Novel Coupled Memristive Izhikevich Neuron Model and Its Complex Dynamics," Mathematics, MDPI, vol. 12(14), pages 1-17, July.
    5. Njitacke, Zeric Tabekoueng & Ramakrishnan, Balamurali & Rajagopal, Karthikeyan & Fonzin Fozin, Théophile & Awrejcewicz, Jan, 2022. "Extremely rich dynamics of coupled heterogeneous neurons through a Josephson junction synapse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    6. Kafraj, Mohadeseh Shafiei & Parastesh, Fatemeh & Jafari, Sajad, 2020. "Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    7. Wang, Guowei & Wu, Yong & Xiao, Fangli & Ye, Zhiqiu & Jia, Ya, 2022. "Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    8. Fossi, Jules Tagne & Njitacke, Zeric Tabekoueng & Tankeu, William Nguimeya & Mendimi, Joseph Marie & Awrejcewicz, Jan & Atangana, Jacques, 2023. "Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Yao, Zhao & Zhou, Ping & Alsaedi, Ahmed & Ma, Jun, 2020. "Energy flow-guided synchronization between chaotic circuits," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    10. Zandi-Mehran, Nazanin & Panahi, Shirin & Hosseini, Zahra & Hashemi Golpayegani, Seyed Mohammad Reza & Jafari, Sajad, 2020. "One dimensional map-based neuron model: A phase space interpretation," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    11. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    12. Fateev, I. & Polezhaev, A., 2024. "Chimera states in a lattice of superdiffusively coupled neurons," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    13. Wang, Zhen & Parastesh, Fatemeh & Rajagopal, Karthikeyan & Hamarash, Ibrahim Ismael & Hussain, Iqtadar, 2020. "Delay-induced synchronization in two coupled chaotic memristive Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    14. Khaleghi, Leyla & Panahi, Shirin & Chowdhury, Sayantan Nag & Bogomolov, Sergey & Ghosh, Dibakar & Jafari, Sajad, 2019. "Chimera states in a ring of map-based neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    15. Shepelev, I.A. & Bukh, A.V. & Strelkova, G.I. & Anishchenko, V.S., 2021. "Anti-phase relay synchronization of wave structures in a heterogeneous multiplex network of 2D lattices," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    16. H. O. Fatoyinbo & S. S. Muni & A. Abidemi, 2022. "Influence of sodium inward current on the dynamical behaviour of modified Morris-Lecar model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(1), pages 1-15, January.
    17. Hu, Xueyan & Ding, Qianming & Wu, Yong & Huang, Weifang & Yang, Lijian & Jia, Ya, 2024. "Dynamical rewiring promotes synchronization in memristive FitzHugh-Nagumo neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    18. Xu, Quan & Wang, Kai & Chen, Mo & Parastesh, Fatemeh & Wang, Ning, 2024. "Bursting and spiking activities in a Wilson neuron circuit with memristive sodium and potassium ion channels," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    19. Schülen, Leonhard & Janzen, David A. & Medeiros, Everton S. & Zakharova, Anna, 2021. "Solitary states in multiplex neural networks: Onset and vulnerability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    20. Ma, Jun & Guo, Yitong, 2024. "Model approach of electromechanical arm interacted with neural circuit, a minireview," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921011139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.