IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922008967.html
   My bibliography  Save this article

Extremely rich dynamics of coupled heterogeneous neurons through a Josephson junction synapse

Author

Listed:
  • Njitacke, Zeric Tabekoueng
  • Ramakrishnan, Balamurali
  • Rajagopal, Karthikeyan
  • Fonzin Fozin, Théophile
  • Awrejcewicz, Jan

Abstract

Artificial neural networks are generally used to emulate some biological activities of the brain. Those neurons in the network are connected to others through synapses. As a result, several works have been devoted to the design of various artificial synapses, including the Josephson Junction Synapse (JJS). In this contribution, a model of the Hindmarsh–Rose neuron coupled with a FitzHugh–Nagumo neuron through a JJS is considered. That JJS enables us to simulate the effects of the magnetic field by providing additional phase error between the junctions. The Hamilton function related to the energy released by the coupled neurons during the transition between electrical activities is determined using the Helmholtz theorem. The equilibrium points of the proposed model are investigated, and their stability justifies the self-excited dynamics of the model. During studies, sets of phenomena such as Hopf bifurcation, double Hopf bifurcation, periodic spikings, periodic and chaotic burstings, (resp. firings) are found. More importantly, several coexisting activities are found in the coupled neurons as well as hyperchaotic firing activities rarely reported in such classes of neurons. Finally, PSpice simulations are used to further support results obtained from the mathematical model of coupled neurons through a JJS.

Suggested Citation

  • Njitacke, Zeric Tabekoueng & Ramakrishnan, Balamurali & Rajagopal, Karthikeyan & Fonzin Fozin, Théophile & Awrejcewicz, Jan, 2022. "Extremely rich dynamics of coupled heterogeneous neurons through a Josephson junction synapse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008967
    DOI: 10.1016/j.chaos.2022.112717
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922008967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Ping & Hu, Xikui & Zhu, Zhigang & Ma, Jun, 2021. "What is the most suitable Lyapunov function?," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Kafraj, Mohadeseh Shafiei & Parastesh, Fatemeh & Jafari, Sajad, 2020. "Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    3. Panahi, Shirin & Aram, Zainab & Jafari, Sajad & Ma, Jun & Sprott, J.C., 2017. "Modeling of epilepsy based on chaotic artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 150-156.
    4. Xu, Ying & Guo, Yeye & Ren, Guodong & Ma, Jun, 2020. "Dynamics and stochastic resonance in a thermosensitive neuron," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    5. Njitacke, Zeric Tabekoueng & Doubla, Isaac Sami & Mabekou, Sandrine & Kengne, Jacques, 2020. "Hidden electrical activity of two neurons connected with an asymmetric electric coupling subject to electromagnetic induction: Coexistence of patterns and its analog implementation," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    6. Hou, Zhangliang & Ma, Jun & Zhan, Xuan & Yang, Lijian & Jia, Ya, 2021. "Estimate the electrical activity in a neuron under depolarization field," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Semenov, Vladimir V. & Bukh, Andrei V. & Semenova, Nadezhda, 2023. "Delay-induced self-oscillation excitation in the Fitzhugh–Nagumo model: Regular and chaotic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Ma, Jun & Guo, Yitong, 2024. "Model approach of electromechanical arm interacted with neural circuit, a minireview," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    4. Bao, Han & Ding, Ruoyu & Chen, Bei & Xu, Quan & Bao, Bocheng, 2023. "Two-dimensional non-autonomous neuron model with parameter-controlled multi-scroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fossi, Jules Tagne & Njitacke, Zeric Tabekoueng & Tankeu, William Nguimeya & Mendimi, Joseph Marie & Awrejcewicz, Jan & Atangana, Jacques, 2023. "Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Sun, Guoping & Yang, Feifei & Ren, Guodong & Wang, Chunni, 2023. "Energy encoding in a biophysical neuron and adaptive energy balance under field coupling," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Wang, Guowei & Wu, Yong & Xiao, Fangli & Ye, Zhiqiu & Jia, Ya, 2022. "Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    5. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Ma, Xiaowen & Xu, Ying, 2022. "Taming the hybrid synapse under energy balance between neurons," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    7. Li, Fan & Liu, Shuai & Li, Xiaola, 2022. "Pattern selection in thermosensitive neuron network induced by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    8. Yu, Dong & Lu, Lulu & Wang, Guowei & Yang, Lijian & Jia, Ya, 2021. "Synchronization mode transition induced by bounded noise in multiple time-delays coupled FitzHugh–Nagumo model," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    9. Jules Tagne Fossi & Vandi Deli & Hélène Carole Edima & Zeric Tabekoueng Njitacke & Florent Feudjio Kemwoue & Jacques Atangana, 2022. "Phase synchronization between two thermo-photoelectric neurons coupled through a Josephson Junction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-17, April.
    10. Guo, Yitong & Xie, Ying & Ma, Jun, 2023. "Nonlinear responses in a neural network under spatial electromagnetic radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    11. Muni, Sishu Shankar & Rajagopal, Karthikeyan & Karthikeyan, Anitha & Arun, Sundaram, 2022. "Discrete hybrid Izhikevich neuron model: Nodal and network behaviours considering electromagnetic flux coupling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    12. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    13. Leng, Xiangxin & Gu, Shuangquan & Peng, Qiqi & Du, Baoxiang, 2021. "Study on a four-dimensional fractional-order system with dissipative and conservative properties," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Fengling Jia & Peiyan He & Lixin Yang, 2024. "A Novel Coupled Memristive Izhikevich Neuron Model and Its Complex Dynamics," Mathematics, MDPI, vol. 12(14), pages 1-17, July.
    15. Guo, Yeye & Wang, Chunni & Yao, Zhao & Xu, Ying, 2022. "Desynchronization of thermosensitive neurons by using energy pumping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    16. Kaijun Wu & Jiawei Li, 2023. "Effects of high–low-frequency electromagnetic radiation on vibrational resonance in FitzHugh–Nagumo neuronal systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(9), pages 1-19, September.
    17. Zhou, Ping & Ma, Jun & Xu, Ying, 2023. "Phase synchronization between neurons under nonlinear coupling via hybrid synapse," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    18. Lei, Yong & Xu, Xin-Jian & Wang, Xiaofan & Zou, Yong & Kurths, Jürgen, 2023. "A new criterion for optimizing synchrony of coupled oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    19. Dai, Shiqi & Lu, Lulu & Wei, Zhouchao & Zhu, Yuan & Yi, Ming, 2022. "Influence of temperature and noise on the propagation of subthreshold signal in feedforward neural network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.