IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v130y2020ics0960077919303558.html
   My bibliography  Save this article

A new fractional-order system displaying coexisting multiwing attractors; its synchronisation and circuit simulation

Author

Listed:
  • Dutta, Maitreyee
  • Roy, Binoy Krishna

Abstract

This paper presents a novel chaotic system having tan-hyperbolic non-linearity exhibiting chaotic attractors with multiple wings (2 or more) in its fractional-order dynamics. Also, there is coexistence of these strange attractors which has been proved by continuation method. The proposed system displays two types of multistability, one on variation of initial conditions and other on keeping the initial condition constant but varying the offset variable. The dynamical analysis of the system is done by comparison between the theoretical calculations and validation of simulated results. Adaptive sliding mode controller is applied to the system with disturbance for synchronisation. Feasibility of circuit implementation is also shown for the fractional-order representation of the system and possibility coexistence of attractors in terms of different initial condition and offset variable by means of circuit simulation.

Suggested Citation

  • Dutta, Maitreyee & Roy, Binoy Krishna, 2020. "A new fractional-order system displaying coexisting multiwing attractors; its synchronisation and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303558
    DOI: 10.1016/j.chaos.2019.109414
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919303558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fatmawati, & Khan, Muhammad Altaf & Azizah, Muftiyatul & Windarto, & Ullah, Saif, 2019. "A fractional model for the dynamics of competition between commercial and rural banks in Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 32-46.
    2. Uçar, Sümeyra & Uçar, Esmehan & Özdemir, Necati & Hammouch, Zakia, 2019. "Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 300-306.
    3. Shabestari, Payam Sadeghi & Panahi, Shirin & Hatef, Boshra & Jafari, Sajad & Sprott, Julien C., 2018. "A new chaotic model for glucose-insulin regulatory system," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 44-51.
    4. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
    5. Ginoux, Jean-Marc & Ruskeepää, Heikki & Perc, Matjaž & Naeck, Roomila & Costanzo, Véronique Di & Bouchouicha, Moez & Fnaiech, Farhat & Sayadi, Mounir & Hamdi, Takoua, 2018. "Is type 1 diabetes a chaotic phenomenon?," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 198-205.
    6. Ghanbari, Behzad & Gómez-Aguilar, J.F., 2018. "Modeling the dynamics of nutrient–phytoplankton–zooplankton system with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 114-120.
    7. Borah, Manashita & Roy, Binoy K., 2017. "An enhanced multi-wing fractional-order chaotic system with coexisting attractors and switching hybrid synchronisation with its nonautonomous counterpart," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 372-386.
    8. Messadi, M. & Mellit, A., 2017. "Control of chaos in an induction motor system with LMI predictive control and experimental circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 51-58.
    9. Owolabi, Kolade M., 2019. "Behavioural study of symbiosis dynamics via the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 89-101.
    10. Khan, Aziz & Gómez-Aguilar, J.F. & Saeed Khan, Tahir & Khan, Hasib, 2019. "Stability analysis and numerical solutions of fractional order HIV/AIDS model," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 119-128.
    11. Kar, T.K. & Nandi, Swapan Kumar & Jana, Soovoojeet & Mandal, Manotosh, 2019. "Stability and bifurcation analysis of an epidemic model with the effect of media," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 188-199.
    12. Khennaoui, Amina-Aicha & Ouannas, Adel & Bendoukha, Samir & Grassi, Giuseppe & Lozi, René Pierre & Pham, Viet-Thanh, 2019. "On fractional–order discrete–time systems: Chaos, stabilization and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 150-162.
    13. Munoz-Pacheco, J.M. & Zambrano-Serrano, E. & Volos, Ch. & Tacha, O.I. & Stouboulos, I.N. & Pham, V.-T., 2018. "A fractional order chaotic system with a 3D grid of variable attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 69-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zain-Aldeen S. A. Rahman & Basil H. Jasim & Yasir I. A. Al-Yasir & Yim-Fun Hu & Raed A. Abd-Alhameed & Bilal Naji Alhasnawi, 2021. "A New Fractional-Order Chaotic System with Its Analysis, Synchronization, and Circuit Realization for Secure Communication Applications," Mathematics, MDPI, vol. 9(20), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhe & Ai, Zhaoyang & Zhang, Jing & Cheng, Fanyong & Liu, Feng & Ding, Can, 2020. "A general stability criterion for multidimensional fractional-order network systems based on whole oscillation principle for small fractional-order operators," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Kamal, F.M. & Elsonbaty, A. & Elsaid, A., 2021. "A novel fractional nonautonomous chaotic circuit model and its application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    4. Yadav, Ram Prasad & Renu Verma,, 2020. "A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Al-khedhairi, A. & Elsadany, A.A. & Elsonbaty, A., 2019. "Modelling immune systems based on Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 25-39.
    6. Wang, Wanting & Khan, Muhammad Altaf & Fatmawati, & Kumam, P. & Thounthong, P., 2019. "A comparison study of bank data in fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 369-384.
    7. Trobia, José & de Souza, Silvio L.T. & dos Santos, Margarete A. & Szezech, José D. & Batista, Antonio M. & Borges, Rafael R. & Pereira, Leandro da S. & Protachevicz, Paulo R. & Caldas, Iberê L. & Iaro, 2022. "On the dynamical behaviour of a glucose-insulin model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    8. Zafar, Zain Ul Abadin & Zaib, Sumera & Hussain, Muhammad Tanveer & Tunç, Cemil & Javeed, Shumaila, 2022. "Analysis and numerical simulation of tuberculosis model using different fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Gao, Wei & Ghanbari, Behzad & Baskonus, Haci Mehmet, 2019. "New numerical simulations for some real world problems with Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 34-43.
    10. Zafar, Zain Ul Abadin & Younas, Samina & Hussain, Muhammad Tanveer & Tunç, Cemil, 2021. "Fractional aspects of coupled mass-spring system," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Zirui Jia & Chongxin Liu, 2020. "A modified modeling and dynamical behavior analysis method for fractional-order positive Luo converter," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-30, August.
    12. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    13. Khader, M.M. & Inc, Mustafa, 2021. "Numerical technique based on the interpolation with Lagrange polynomials to analyze the fractional variable-order mathematical model of the hepatitis C with different types of virus genome," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    15. Ganji, R.M. & Jafari, H. & Baleanu, D., 2020. "A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    16. Cui, Li & Lu, Ming & Ou, Qingli & Duan, Hao & Luo, Wenhui, 2020. "Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    17. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    18. Khan, Hasib & Ibrahim, Muhammad & Abdel-Aty, Abdel-Haleem & Khashan, M. Motawi & Khan, Farhat Ali & Khan, Aziz, 2021. "A fractional order Covid-19 epidemic model with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    19. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    20. Zhang, Jie & Zuo, Jiangang & Wang, Meng & Guo, Yan & Xie, Qinggang & Hou, Jinyou, 2024. "Design and application of multiscroll chaotic attractors based on a novel multi-segmented memristor," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.