IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0237169.html
   My bibliography  Save this article

A modified modeling and dynamical behavior analysis method for fractional-order positive Luo converter

Author

Listed:
  • Zirui Jia
  • Chongxin Liu

Abstract

Compared to the integer-order modeling, the fractional-order modeling can achieve higher accuracy for designing and analyzing the DC-DC power converters. However, its applications in pulse width modulation (PWM) converters are limited due to the computational complexities. In this paper, a modified fractional-order modeling methodology for DC-DC converters is proposed, and its effectiveness is verified on the fractional-order positive Luo converters. Instead of using fractional-order calculus, the proposed methodology analyzes the harmonic components of the PWM converters by utilizing the non-linear vector differential equations of the periodically time-variant system. The final solution of the state variables is composed of two parts: the steady-state solution and the transient solution. The approximate steady state solution can be obtained by using the equivalent small parameter (ESP) method and the harmonic balance theory, while the main part of the transient solution can be obtained according to the explicit Grünwald-Letnikov (GL) approximation. In addition, the influence of the fractional orders on the performance of the DC-DC converters, and on the dynamic behaviors of the fractional-orders systems are also discussed in this paper. Compared to the conventional fractional-order numerical models, the proposed model is able to present the time-domain information more precisely, which helps to better reveal and analyze the non-linear behaviors of the DC-DC converters. The effectiveness of the work is demonstrated by the simulation and experimental results of the equivalent circuits built with fractional-order components.

Suggested Citation

  • Zirui Jia & Chongxin Liu, 2020. "A modified modeling and dynamical behavior analysis method for fractional-order positive Luo converter," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-30, August.
  • Handle: RePEc:plo:pone00:0237169
    DOI: 10.1371/journal.pone.0237169
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237169
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0237169&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0237169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Khan, Aziz & Gómez-Aguilar, J.F. & Saeed Khan, Tahir & Khan, Hasib, 2019. "Stability analysis and numerical solutions of fractional order HIV/AIDS model," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 119-128.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.
    2. Khan, Hasib & Ibrahim, Muhammad & Abdel-Aty, Abdel-Haleem & Khashan, M. Motawi & Khan, Farhat Ali & Khan, Aziz, 2021. "A fractional order Covid-19 epidemic model with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    3. Dutta, Maitreyee & Roy, Binoy Krishna, 2020. "A new fractional-order system displaying coexisting multiwing attractors; its synchronisation and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    4. Tassaddiq, Asifa, 2019. "MHD flow of a fractional second grade fluid over an inclined heated plate," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 341-346.
    5. Okposo, Newton I. & Adewole, Matthew O. & Okposo, Emamuzo N. & Ojarikre, Herietta I. & Abdullah, Farah A., 2021. "A mathematical study on a fractional COVID-19 transmission model within the framework of nonsingular and nonlocal kernel," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Nazir, Ghazala & Shah, Kamal & Debbouche, Amar & Khan, Rahmat Ali, 2020. "Study of HIV mathematical model under nonsingular kernel type derivative of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Devi, Amita & Kumar, Anoop, 2022. "Hyers–Ulam stability and existence of solution for hybrid fractional differential equation with p-Laplacian operator," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    8. Kar, Silajit & Maiti, Dilip K. & Maiti, Atasi Patra, 2024. "Impacts of non-locality and memory kernel of fractional derivative, awareness and treatment strategies on HIV/AIDS prevalence," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0237169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.