IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics0960077924002285.html
   My bibliography  Save this article

Design and application of multiscroll chaotic attractors based on a novel multi-segmented memristor

Author

Listed:
  • Zhang, Jie
  • Zuo, Jiangang
  • Wang, Meng
  • Guo, Yan
  • Xie, Qinggang
  • Hou, Jinyou

Abstract

Introducing memristors into the traditional chaotic system can generate multiscroll chaotic attractors, expanding possibilities for information processing and chaotic applications. This paper first proposes a novel multi-segment memristor model based on a multi-segment linear function. Then, based on the Sprott-B system, one-directional memristive multiscroll chaotic attractors (1D-MMSCAs), 2D-MMSCAs, and 3D-MMSCAs are produced separately, with different numbers of novel memristors introduced. The dynamic behavior of the MMSCAs is analyzed in terms of equilibrium points, Lyapunov exponents and bifurcations, coexisting attractors, and complexity. Lyapunov exponent and bifurcation analysis reveal rich dynamic behavior of the MMSCAs, including period-doubling bifurcations, bursts of chaos, and transient of chaos. The MMSCAs exhibit dynamic phenomena such as coexisting attractors, multistability, and super multistability under different initial conditions. Furthermore, the existence and feasibility of the MMSCAs are verified through circuit simulation. Coexisting attractors generation circuits that can change the initial values of arbitrary state variables are designed. Using an improved Euler algorithm and the STM32 microcontroller, the MMSCAs are digitally implemented, expanding the application scope. Comparative results with other multi-scroll chaotic attractors (MSCAs) demonstrate the advantages of the proposed MMSCAs, including controllable scroll number and direction, simple implementation circuits, and rich dynamic behavior. Finally, the MMSCAs are applied to finite-time synchronization. Simulation results show that the two proposed synchronization schemes in this paper require less time to achieve complete synchronization compared to other synchronization schemes. This characteristic enhances the efficiency and practicality of the proposed synchronization strategy in real-world applications.

Suggested Citation

  • Zhang, Jie & Zuo, Jiangang & Wang, Meng & Guo, Yan & Xie, Qinggang & Hou, Jinyou, 2024. "Design and application of multiscroll chaotic attractors based on a novel multi-segmented memristor," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002285
    DOI: 10.1016/j.chaos.2024.114676
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924002285
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114676?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Hairong & Wang, Chunhua & Du, Sichun & Yao, Wei & Sun, Yichuang, 2023. "A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Yan, Shaohui & Wang, Ertong & Gu, Binxian & Wang, Qiyu & Ren, Yu & Wang, Jianjian, 2022. "Analysis and finite-time synchronization of a novel double-wing chaotic system with transient chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    3. Arthanari Ramesh & Alireza Bahramian & Hayder Natiq & Karthikeyan Rajagopal & Sajad Jafari & Iqtadar Hussain & M. De Aguiar, 2022. "A Novel Highly Nonlinear Quadratic System: Impulsive Stabilization, Complexity Analysis, and Circuit Designing," Complexity, Hindawi, vol. 2022, pages 1-14, March.
    4. Peng, Hongxin & Ji’e, Musha & Du, Xinyu & Duan, Shukai & Wang, Lidan, 2023. "Design of pseudorandom number generator based on a controllable multi-double-scroll chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Y. J. F. Kpomahou & A. Adomou & J. A. Adéchinan & A. E. Yamadjako & I. V. Madogni & Jesus M. Munoz-Pacheco, 2022. "Chaotic Behaviors and Coexisting Attractors in a New Nonlinear Dissipative Parametric Chemical Oscillator," Complexity, Hindawi, vol. 2022, pages 1-16, March.
    6. Zhang, Tianxian & Zhao, Yongqi & Xu, Xiangliang & Wu, Si & Gu, Yujuan, 2024. "Solution and dynamics analysis of fractal-fractional multi-scroll Chen chaotic system based on Adomain decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    7. Bao, Han & Ding, Ruoyu & Chen, Bei & Xu, Quan & Bao, Bocheng, 2023. "Two-dimensional non-autonomous neuron model with parameter-controlled multi-scroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Han, S.Y. & Kommuri, S.K. & Kwon, O.M. & Lee, S.M., 2022. "Regional sampled-data synchronization of chaotic neural networks using piecewise-continuous delay dependent Lyapunov functional," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    9. Nasr, Salah & Mekki, Hassen & Bouallegue, Kais, 2019. "A multi-scroll chaotic system for a higher coverage path planning of a mobile robot using flatness controller," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 366-375.
    10. Balaraman, Sundarambal & Kengne, Jacques & Kamga Fogue, M.S. & Rajagopal, Karthikeyan, 2023. "From coexisting attractors to multi-spiral chaos in a ring of three coupled excitation-free Duffing oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    11. Lin, Hairong & Wang, Chunhua & Sun, Jingru & Zhang, Xin & Sun, Yichuang & Iu, Herbert H.C., 2023. "Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. Wan, Qiuzhen & Li, Fei & Chen, Simiao & Yang, Qiao, 2023. "Symmetric multi-scroll attractors in magnetized Hopfield neural network under pulse controlled memristor and pulse current stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Borah, Manashita & Roy, Binoy K., 2017. "An enhanced multi-wing fractional-order chaotic system with coexisting attractors and switching hybrid synchronisation with its nonautonomous counterpart," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 372-386.
    14. Cheng, Guanghui & Li, Dan & Yao, Yuangen & Gui, Rong, 2023. "Multi-scroll chaotic attractors with multi-wing via oscillatory potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    15. Lai, Qiang & Chen, Zhijie, 2023. "Dynamical analysis and finite-time synchronization of grid-scroll memristive chaotic system without equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    16. Chen, Liping & Pan, Wei & Wu, Ranchao & Wang, Kunpeng & He, Yigang, 2016. "Generation and circuit implementation of fractional-order multi-scroll attractors," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 22-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Bo & Zhang, Ying, 2024. "Comprehensive analysis of the mechanism of sensitivity to initial conditions and fractal basins of attraction in a novel variable-distance magnetic pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Guanghui & Li, Dan & Yao, Yuangen & Gui, Rong, 2023. "Multi-scroll chaotic attractors with multi-wing via oscillatory potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    4. Lin, Hairong & Wang, Chunhua & Du, Sichun & Yao, Wei & Sun, Yichuang, 2023. "A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    5. Zhang, Shaohua & Zhang, Hongli & Wang, Cong & Lin, Hairong, 2024. "Bionic modeling and dynamics analysis of heterogeneous brain regions connected by memristive synaptic crosstalk," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    6. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    7. Huang, Keyu & Li, Chunbiao & Cen, Xiaoliang & Chen, Guanrong, 2024. "Constructing chaotic oscillators with memory components," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    8. Cui, Li & Lu, Ming & Ou, Qingli & Duan, Hao & Luo, Wenhui, 2020. "Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Yu, Fei & Kong, Xinxin & Yao, Wei & Zhang, Jin & Cai, Shuo & Lin, Hairong & Jin, Jie, 2024. "Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    10. SaberiKamarposhti, Morteza & Ghorbani, Amirabbas & Yadollahi, Mehdi, 2024. "A comprehensive survey on image encryption: Taxonomy, challenges, and future directions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    11. Yinfang Ye & Jianbin He, 2024. "Constructing a New Multi-Scroll Chaotic System and Its Circuit Design," Mathematics, MDPI, vol. 12(13), pages 1-14, June.
    12. Yang, Yu & Qin, Shijie & Liao, Shijun, 2023. "Ultra-chaos of a mobile robot: A higher disorder than normal-chaos," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    13. Adhira, B. & Nagamani, G., 2023. "Exponentially finite-time dissipative discrete state estimator for delayed competitive neural networks via semi-discretization approach," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    14. Min, Fuhong & Zhu, Jie & Cheng, Yizi & Xu, Yeyin, 2024. "Dynamical analysis of a tabu learning neuron through the discrete implicit mapping method," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    15. Li, Yongxin & Li, Chunbiao & Zhong, Qing & Zhao, Yibo & Yang, Yong, 2024. "Coexisting hollow chaotic attractors within a steep parameter interval," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    16. Qingye Huang & Linqing Huang & Shuting Cai & Xiaoming Xiong & Hui Zhang, 2023. "On a Symmetric Image Cryptosystem Based on a Novel One-Dimensional Chaotic System and Banyan Network," Mathematics, MDPI, vol. 11(21), pages 1-21, October.
    17. Kamal, F.M. & Elsonbaty, A. & Elsaid, A., 2021. "A novel fractional nonautonomous chaotic circuit model and its application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    18. Yan, Donglin & Wang, Weiyu & Chen, Qijuan, 2018. "Fractional-order modeling and dynamic analyses of a bending-torsional coupling generator rotor shaft system with multiple faults," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 1-15.
    19. Jayaraman Venkatesh & Alexander N. Pchelintsev & Anitha Karthikeyan & Fatemeh Parastesh & Sajad Jafari, 2023. "A Fractional-Order Memristive Two-Neuron-Based Hopfield Neuron Network: Dynamical Analysis and Application for Image Encryption," Mathematics, MDPI, vol. 11(21), pages 1-17, October.
    20. Yan, Minxiu & Jie, Jingfeng, 2022. "Fractional-order multiwing switchable chaotic system with a wide range of parameters," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.