IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v113y2018icp69-78.html
   My bibliography  Save this article

A fractional order chaotic system with a 3D grid of variable attractors

Author

Listed:
  • Munoz-Pacheco, J.M.
  • Zambrano-Serrano, E.
  • Volos, Ch.
  • Tacha, O.I.
  • Stouboulos, I.N.
  • Pham, V.-T.

Abstract

A novel fractional order dynamical system with a variable double-scroll attractor on a line, lattice and 3D grid is introduced. This system belongs to a class of chaotic systems with adjustable variables but with fractional order. Chaos generation only depends on the value of fractional order. As a result, a chaotic attractor is discovered and propagated in y-line. By introducing two extra control parameters, we also observed that the chaotic attractor varies in x-line, z-line, x−y-lattice, x−z-lattice, y−z-lattice, and 3D-grid. Dynamics of the new system are discovered by using phase portraits, bifurcation diagrams, Lyapunov spectrum, Kaplan–Yorke dimension, dissipative measure. Finally, the proposed fractional order system is designed with analog electronic circuits. Circuit results are in concordance with theoretical findings.

Suggested Citation

  • Munoz-Pacheco, J.M. & Zambrano-Serrano, E. & Volos, Ch. & Tacha, O.I. & Stouboulos, I.N. & Pham, V.-T., 2018. "A fractional order chaotic system with a 3D grid of variable attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 69-78.
  • Handle: RePEc:eee:chsofr:v:113:y:2018:i:c:p:69-78
    DOI: 10.1016/j.chaos.2018.05.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918302704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.05.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stutzer, Michael J., 1980. "Chaotic dynamics and bifurcation in a macro model," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 353-376, May.
    2. Li, Chunguang & Chen, Guanrong, 2004. "Chaos and hyperchaos in the fractional-order Rössler equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 55-61.
    3. Volos, Ch. K. & Kyprianidis, I.M. & Stouboulos, I.N. & Vaidyanathan, S. & Pham, V.-T., 2016. "Analysis, adaptive control and circuit simulation of a novel nonlinear finance systemAuthor-Name: Tacha, O.I," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 200-217.
    4. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    5. Kingni, Sifeu Takougang & Pham, Viet-Thanh & Jafari, Sajad & Woafo, Paul, 2017. "A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 209-218.
    6. Chen, Liping & Pan, Wei & Wang, Kunpeng & Wu, Ranchao & Machado, J. A. Tenreiro & Lopes, António M., 2017. "Generation of a family of fractional order hyper-chaotic multi-scroll attractors," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 244-255.
    7. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2009. "A note on the stability of fractional order systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1566-1576.
    8. Ouannas, Adel & Odibat, Zaid & Hayat, Tasawar, 2017. "Fractional analysis of co-existence of some types of chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 215-223.
    9. Chen, Wei-Ching, 2008. "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1305-1314.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhe & Ai, Zhaoyang & Zhang, Jing & Cheng, Fanyong & Liu, Feng & Ding, Can, 2020. "A general stability criterion for multidimensional fractional-order network systems based on whole oscillation principle for small fractional-order operators," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Muhamad Deni Johansyah & Aceng Sambas & Saleh Mobayen & Behrouz Vaseghi & Saad Fawzi Al-Azzawi & Sukono & Ibrahim Mohammed Sulaiman, 2022. "Dynamical Analysis and Adaptive Finite-Time Sliding Mode Control Approach of the Financial Fractional-Order Chaotic System," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    3. Cui, Li & Lu, Ming & Ou, Qingli & Duan, Hao & Luo, Wenhui, 2020. "Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Dutta, Maitreyee & Roy, Binoy Krishna, 2021. "A new memductance-based fractional-order chaotic system and its fixed-time synchronisation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    5. Dutta, Maitreyee & Roy, Binoy Krishna, 2020. "A new fractional-order system displaying coexisting multiwing attractors; its synchronisation and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    6. Leng, Xiangxin & Gu, Shuangquan & Peng, Qiqi & Du, Baoxiang, 2021. "Study on a four-dimensional fractional-order system with dissipative and conservative properties," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Chenhui Wang, 2016. "Adaptive Fuzzy Control for Uncertain Fractional-Order Financial Chaotic Systems Subjected to Input Saturation," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-17, October.
    3. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.
    4. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    5. Petráš, Ivo, 2008. "A note on the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 140-147.
    6. Silva-Juárez, Alejandro & Tlelo-Cuautle, Esteban & de la Fraga, Luis Gerardo & Li, Rui, 2021. "Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    7. Xu, Fei & Lai, Yongzeng & Shu, Xiao-Bao, 2018. "Chaos in integer order and fractional order financial systems and their synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 125-136.
    8. Deepika, Deepika & Kaur, Sandeep & Narayan, Shiv, 2018. "Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 196-203.
    9. Huang, Xiuqi & Wang, Xiangjun, 2021. "Regularity of fractional stochastic convolution and its application to fractional stochastic chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    10. Zhang, Chaoxia & Yu, Simin, 2011. "Generation of multi-wing chaotic attractor in fractional order system," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 845-850.
    11. Khanzadeh, Alireza & Pourgholi, Mahdi, 2016. "Robust Synchronization of Fractional-Order Chaotic Systems at a Pre-Specified Time Using Sliding Mode Controller with Time-Varying Switching Surfaces," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 69-77.
    12. Deshpande, Amey S. & Daftardar-Gejji, Varsha, 2017. "On disappearance of chaos in fractional systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 119-126.
    13. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Jajarmi, Amin & Hajipour, Mojtaba & Baleanu, Dumitru, 2017. "New aspects of the adaptive synchronization and hyperchaos suppression of a financial model," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 285-296.
    15. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2008. "Synchronization of chaotic fractional-order systems via active sliding mode controller," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 57-70.
    16. Chen, Yiming & Ke, Xiaohong & Wei, Yanqiao, 2015. "Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 475-488.
    17. Sharma, Vivek & Shukla, Manoj & Sharma, B.B., 2018. "Unknown input observer design for a class of fractional order nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 96-107.
    18. Zhang, Weiwei & Zhou, Shangbo & Li, Hua & Zhu, Hao, 2009. "Chaos in a fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1684-1691.
    19. Gao, Yuan & Liang, Chenghua & Wu, Qiqi & Yuan, Haiying, 2015. "A new fractional-order hyperchaotic system and its modified projective synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 190-204.
    20. Zambrano-Serrano, Ernesto & Bekiros, Stelios & Platas-Garza, Miguel A. & Posadas-Castillo, Cornelio & Agarwal, Praveen & Jahanshahi, Hadi & Aly, Ayman A., 2021. "On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:113:y:2018:i:c:p:69-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.